Connectivity-Driven Brain Parcellation via Consensus Clustering

We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains...

Full description

Saved in:
Bibliographic Details
Published inConnectomics in NeuroImaging Vol. 11083; pp. 117 - 126
Main Authors Kurmukov, Anvar, Musabaeva, Ayagoz, Denisova, Yulia, Moyer, Daniel, Gutman, Boris
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030007545
9783030007546
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-00755-3_13

Cover

Abstract We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. We assess the quality of our parcellations using (1) Kullback-Liebler and Jensen-Shannon divergence with respect to the dense connectome representation, (2) inter-hemispheric symmetry, and (3) performance of the simplified connectome in a biological sex classification task. We find that the parcellation based-atlas computed using a greedy search at a hierarchical depth 3 outperforms all other parcellation-based atlases as well as the standard Dessikan-Killiany anatomical atlas in all three assessments.
AbstractList We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. We assess the quality of our parcellations using (1) Kullback-Liebler and Jensen-Shannon divergence with respect to the dense connectome representation, (2) inter-hemispheric symmetry, and (3) performance of the simplified connectome in a biological sex classification task. We find that the parcellation based-atlas computed using a greedy search at a hierarchical depth 3 outperforms all other parcellation-based atlases as well as the standard Dessikan-Killiany anatomical atlas in all three assessments.
Author Kurmukov, Anvar
Musabaeva, Ayagoz
Moyer, Daniel
Gutman, Boris
Denisova, Yulia
Author_xml – sequence: 1
  givenname: Anvar
  surname: Kurmukov
  fullname: Kurmukov, Anvar
– sequence: 2
  givenname: Ayagoz
  surname: Musabaeva
  fullname: Musabaeva, Ayagoz
– sequence: 3
  givenname: Yulia
  surname: Denisova
  fullname: Denisova, Yulia
– sequence: 4
  givenname: Daniel
  surname: Moyer
  fullname: Moyer, Daniel
– sequence: 5
  givenname: Boris
  surname: Gutman
  fullname: Gutman, Boris
  email: bgutman1@iit.edu
BookMark eNo1UMtOwzAQNFAQbekfcMgPGLze2IlPCMpTqgSH3i3H2UIgckqcVuLvcVs47e7szK5mJmwUukCMXYK4AiGKa1OUHLlAwdOkFEcLeMRmCcYE7jE8ZmPQABwxNyds8r_I1YiNUy-5KXI8YxMQCrVEEOaczWL8TCwpSqNLOWY38y4E8kOzbYYfft83WwrZXe-akL253lPbuqHpQrZtXJaokULcxGzebuJAfRPeL9jpyrWRZn91ypaPD8v5M1-8Pr3Mbxd8LXMceG1qqHRJAnxBfiWFhKIqqppqWVeFdNqAcXLlfe3QOyKTS3KASpLytdI4ZfJwNq53X6m3Vdd9RQvC7uKyKReLNpm2-2jsLq4kyg-idd99bygOlnYqT2HoXes_3Dp5iFbLUoFWFsBYkBp_AQRSa5I
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 612.82
DOI 10.1007/978-3-030-00755-3_13
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISBN 9783030007553
3030007553
EISSN 1611-3349
Editor Wu, Guorong
Munsell, Brent
Chung, Ai Wern
Schirmer, Markus D
Rekik, Islem
Editor_xml – sequence: 1
  fullname: Wu, Guorong
– sequence: 2
  fullname: Schirmer, Markus D
– sequence: 3
  fullname: Rekik, Islem
– sequence: 4
  fullname: Munsell, Brent
– sequence: 5
  fullname: Chung, Ai Wern
EndPage 126
ExternalDocumentID EBC6285165_119_126
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-d9d1b68e01c7ecf20217b7bded2db72a6919a2fccda3caee942ea1352e5cd563
ISBN 3030007545
9783030007546
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:15 EDT 2025
Mon Apr 07 01:59:20 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-d9d1b68e01c7ecf20217b7bded2db72a6919a2fccda3caee942ea1352e5cd563
OCLC 1053623109
PQID EBC6285165_119_126
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_030_00755_3_13
proquest_ebookcentralchapters_6285165_119_126
PublicationCentury 2000
PublicationDate 2018
20180915
PublicationDateYYYYMMDD 2018-01-01
2018-09-15
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Second International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
PublicationTitle Connectomics in NeuroImaging
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
SSID ssj0002089682
ssj0002792
Score 1.8939813
Snippet We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed...
SourceID springer
proquest
SourceType Publisher
StartPage 117
SubjectTerms Cluster-based Similarity Partitioning Algorithm
Consensus Clustering
Gender Classification Task
Individual Parcellations
Jensen-Shannon Divergence
Title Connectivity-Driven Brain Parcellation via Consensus Clustering
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6285165&ppg=126
http://link.springer.com/10.1007/978-3-030-00755-3_13
Volume 11083
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VrYQKh5YFxKOtcugNGeXlZH1CsGxLUUEcFsTNcmyvhNQuCxs48OuZcZzdbNgLvURRZFuOPz9mxjPzAfwQKRe6CDmutJyzNCsSJkaopYhEGMWFxTORgpMvLrOz6_T8lt_Oqe9cdElZHOqXpXEl_4MqfkNcKUr2HcjOGsUP-I744hMRxmdL-F00s1Z5BchFRZcUVex8Wl2ajd__HOtQcyL4co4kgp0-0u6GiCqscaWc3b6aAs93yrF3EvXF9KD_94kyKNRNebNA1GuZBWqzYMuw2LBtHf9aUCXxKHPygzcI1ntjFFY8M2922qZzBVZlVJezRFaRpYuJraO4le3anZ-Dkz7Fb0YZRzVESCo0eWDEB0b35p4cZQVWsG8d-Hg8OP9zM7OexWFPZD1Ss2f95lU6pfl_NAIll3VzQaVo3YI74WL4BdYp4CSgSBDs-AZ8sOMufK7pNgK_-3ZhrZE7sgurF94rYhOOlkAcOIiDJsQBQhzMIA7mEG_B8Odg2D9jnhiDTeI0KZkRJiqyng0jnVuNSwv1yiIvjDWxKfJYZSISKh5pbVSilbUija2KUNS2XBueJdvQGd-P7Q4EoQktufpaHMw0HimRaqFGuERzo3NUxXeB1YMk3e29dxnW1ZBMZQvBXTioR1JS8ams02IjBDKRCIF0EEiCYO-dre_Dp_lU_wqd8vHJfkOZsCy--wnyCgZ3XlE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Connectomics+in+NeuroImaging&rft.atitle=Connectivity-Driven+Brain+Parcellation+via+Consensus+Clustering&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030007546&rft.volume=11083&rft_id=info:doi/10.1007%2F978-3-030-00755-3_13&rft.externalDBID=126&rft.externalDocID=EBC6285165_119_126
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6285165-l.jpg