Connectivity-Driven Brain Parcellation via Consensus Clustering
We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains...
Saved in:
| Published in | Connectomics in NeuroImaging Vol. 11083; pp. 117 - 126 |
|---|---|
| Main Authors | , , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3030007545 9783030007546 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-030-00755-3_13 |
Cover
| Abstract | We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. We assess the quality of our parcellations using (1) Kullback-Liebler and Jensen-Shannon divergence with respect to the dense connectome representation, (2) inter-hemispheric symmetry, and (3) performance of the simplified connectome in a biological sex classification task. We find that the parcellation based-atlas computed using a greedy search at a hierarchical depth 3 outperforms all other parcellation-based atlases as well as the standard Dessikan-Killiany anatomical atlas in all three assessments. |
|---|---|
| AbstractList | We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. We assess the quality of our parcellations using (1) Kullback-Liebler and Jensen-Shannon divergence with respect to the dense connectome representation, (2) inter-hemispheric symmetry, and (3) performance of the simplified connectome in a biological sex classification task. We find that the parcellation based-atlas computed using a greedy search at a hierarchical depth 3 outperforms all other parcellation-based atlases as well as the standard Dessikan-Killiany anatomical atlas in all three assessments. |
| Author | Kurmukov, Anvar Musabaeva, Ayagoz Moyer, Daniel Gutman, Boris Denisova, Yulia |
| Author_xml | – sequence: 1 givenname: Anvar surname: Kurmukov fullname: Kurmukov, Anvar – sequence: 2 givenname: Ayagoz surname: Musabaeva fullname: Musabaeva, Ayagoz – sequence: 3 givenname: Yulia surname: Denisova fullname: Denisova, Yulia – sequence: 4 givenname: Daniel surname: Moyer fullname: Moyer, Daniel – sequence: 5 givenname: Boris surname: Gutman fullname: Gutman, Boris email: bgutman1@iit.edu |
| BookMark | eNo1UMtOwzAQNFAQbekfcMgPGLze2IlPCMpTqgSH3i3H2UIgckqcVuLvcVs47e7szK5mJmwUukCMXYK4AiGKa1OUHLlAwdOkFEcLeMRmCcYE7jE8ZmPQABwxNyds8r_I1YiNUy-5KXI8YxMQCrVEEOaczWL8TCwpSqNLOWY38y4E8kOzbYYfft83WwrZXe-akL253lPbuqHpQrZtXJaokULcxGzebuJAfRPeL9jpyrWRZn91ypaPD8v5M1-8Pr3Mbxd8LXMceG1qqHRJAnxBfiWFhKIqqppqWVeFdNqAcXLlfe3QOyKTS3KASpLytdI4ZfJwNq53X6m3Vdd9RQvC7uKyKReLNpm2-2jsLq4kyg-idd99bygOlnYqT2HoXes_3Dp5iFbLUoFWFsBYkBp_AQRSa5I |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2018 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2018 |
| DBID | FFUUA |
| DEWEY | 612.82 |
| DOI | 10.1007/978-3-030-00755-3_13 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISBN | 9783030007553 3030007553 |
| EISSN | 1611-3349 |
| Editor | Wu, Guorong Munsell, Brent Chung, Ai Wern Schirmer, Markus D Rekik, Islem |
| Editor_xml | – sequence: 1 fullname: Wu, Guorong – sequence: 2 fullname: Schirmer, Markus D – sequence: 3 fullname: Rekik, Islem – sequence: 4 fullname: Munsell, Brent – sequence: 5 fullname: Chung, Ai Wern |
| EndPage | 126 |
| ExternalDocumentID | EBC6285165_119_126 |
| GroupedDBID | 0D6 0DA 38. AABBV ACOUV AEDXK AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS ANXHU BBABE BICGV BJAWL BUBNW CVGDX CZZ EDOXC FFUUA FOYMO I4C IEZ NQNQZ OEBZI SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
| ID | FETCH-LOGICAL-p243t-d9d1b68e01c7ecf20217b7bded2db72a6919a2fccda3caee942ea1352e5cd563 |
| ISBN | 3030007545 9783030007546 |
| ISSN | 0302-9743 |
| IngestDate | Tue Jul 29 20:15:15 EDT 2025 Mon Apr 07 01:59:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | Q334-342 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p243t-d9d1b68e01c7ecf20217b7bded2db72a6919a2fccda3caee942ea1352e5cd563 |
| OCLC | 1053623109 |
| PQID | EBC6285165_119_126 |
| PageCount | 10 |
| ParticipantIDs | springer_books_10_1007_978_3_030_00755_3_13 proquest_ebookcentralchapters_6285165_119_126 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 20180915 |
| PublicationDateYYYYMMDD | 2018-01-01 2018-09-15 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | Second International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings |
| PublicationTitle | Connectomics in NeuroImaging |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug |
| SSID | ssj0002089682 ssj0002792 |
| Score | 1.8939813 |
| Snippet | We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 117 |
| SubjectTerms | Cluster-based Similarity Partitioning Algorithm Consensus Clustering Gender Classification Task Individual Parcellations Jensen-Shannon Divergence |
| Title | Connectivity-Driven Brain Parcellation via Consensus Clustering |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6285165&ppg=126 http://link.springer.com/10.1007/978-3-030-00755-3_13 |
| Volume | 11083 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VrYQKh5YFxKOtcugNGeXlZH1CsGxLUUEcFsTNcmyvhNQuCxs48OuZcZzdbNgLvURRZFuOPz9mxjPzAfwQKRe6CDmutJyzNCsSJkaopYhEGMWFxTORgpMvLrOz6_T8lt_Oqe9cdElZHOqXpXEl_4MqfkNcKUr2HcjOGsUP-I744hMRxmdL-F00s1Z5BchFRZcUVex8Wl2ajd__HOtQcyL4co4kgp0-0u6GiCqscaWc3b6aAs93yrF3EvXF9KD_94kyKNRNebNA1GuZBWqzYMuw2LBtHf9aUCXxKHPygzcI1ntjFFY8M2922qZzBVZlVJezRFaRpYuJraO4le3anZ-Dkz7Fb0YZRzVESCo0eWDEB0b35p4cZQVWsG8d-Hg8OP9zM7OexWFPZD1Ss2f95lU6pfl_NAIll3VzQaVo3YI74WL4BdYp4CSgSBDs-AZ8sOMufK7pNgK_-3ZhrZE7sgurF94rYhOOlkAcOIiDJsQBQhzMIA7mEG_B8Odg2D9jnhiDTeI0KZkRJiqyng0jnVuNSwv1yiIvjDWxKfJYZSISKh5pbVSilbUija2KUNS2XBueJdvQGd-P7Q4EoQktufpaHMw0HimRaqFGuERzo3NUxXeB1YMk3e29dxnW1ZBMZQvBXTioR1JS8ams02IjBDKRCIF0EEiCYO-dre_Dp_lU_wqd8vHJfkOZsCy--wnyCgZ3XlE |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Connectomics+in+NeuroImaging&rft.atitle=Connectivity-Driven+Brain+Parcellation+via+Consensus+Clustering&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030007546&rft.volume=11083&rft_id=info:doi/10.1007%2F978-3-030-00755-3_13&rft.externalDBID=126&rft.externalDocID=EBC6285165_119_126 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6285165-l.jpg |