Probabilistic Embeddings of the Fréchet Distance

The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computat...

Full description

Saved in:
Bibliographic Details
Published inApproximation and Online Algorithms Vol. 11312; pp. 218 - 237
Main Authors Driemel, Anne, Krivošija, Amer
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030046927
3030046923
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-04693-4_14

Cover

Abstract The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fréchet distance between two polygonal curves of complexity t in $$\mathrm{I\! R}^d$$ , where $$d\in \lbrace 2,3,4,5\rbrace $$ , degrades by a factor linear in t with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves.
AbstractList The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fréchet distance between two polygonal curves of complexity t in $$\mathrm{I\! R}^d$$ , where $$d\in \lbrace 2,3,4,5\rbrace $$ , degrades by a factor linear in t with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves.
Author Driemel, Anne
Krivošija, Amer
Author_xml – sequence: 1
  givenname: Anne
  surname: Driemel
  fullname: Driemel, Anne
  email: a.driemel@tue.nl
– sequence: 2
  givenname: Amer
  surname: Krivošija
  fullname: Krivošija, Amer
  email: amer.krivosija@tu-dortmund.de
BookMark eNpVUMtOwzAQNFAQaekfcMgPGPzY2PERlRaQKsEBzpbtbGigJCEOH8V38GO4LRdOu5rZGe3MlEzarkVCLjm74ozpa6NLKimTjDJQRlKwHI7IPMEygXsMjknGFedUSjAn_zihJyRLu6BGgzwjU860LnRhBD8n8xjfGGMiMSXojPCnofPON9smjk3Ilx8eq6ppX2Pe1fm4wXw1_HyHDY75bbpwbcALclq7bcT535yRl9XyeXFP1493D4ubNe0FyJGGIlTMSFVBwVAJEDpoEAa9EqFUokBtEJQ0ijlvyqryrgylh7pitSug1nJGxME39kN6CAfru-49Ws7sriSbEltpU067L8TuSkoiOIj6ofv8wjha3KkCtuPgtmHj-hGHaFXqSkIyUtoKoeQvEZlmHw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 005.1
DOI 10.1007/978-3-030-04693-4_14
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030046934
3030046931
EISSN 1611-3349
Editor Epstein, Leah
Erlebach, Thomas
Editor_xml – sequence: 1
  fullname: Epstein, Leah
– sequence: 2
  fullname: Erlebach, Thomas
EndPage 237
ExternalDocumentID EBC6303340_167_226
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-c5cd0936d450e62427c7429eb62c8625e79e463960ab98ddba8c8b4fd0fa54f73
ISBN 9783030046927
3030046923
ISSN 0302-9743
IngestDate Wed Sep 17 04:07:29 EDT 2025
Wed May 28 23:52:14 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-c5cd0936d450e62427c7429eb62c8625e79e463960ab98ddba8c8b4fd0fa54f73
Notes Original Abstract: The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fréchet distance between two polygonal curves of complexity t in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{I\! R}^d$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \lbrace 2,3,4,5\rbrace $$\end{document}, degrades by a factor linear in t with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves.
A. Driemel was funded by NWO Veni project “Clustering time series and trajectories (10019853)”. A. Krivošija has been partly supported by DFG within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project A2. We thank Kevin Buchin for useful discussions on the topic of this paper.
OCLC 1077575921
PQID EBC6303340_167_226
PageCount 20
ParticipantIDs springer_books_10_1007_978_3_030_04693_4_14
proquest_ebookcentralchapters_6303340_167_226
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers
PublicationTitle Approximation and Online Algorithms
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002743847
ssj0002792
Score 1.9296854
Snippet The Fréchet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering,...
SourceID springer
proquest
SourceType Publisher
StartPage 218
SubjectTerms Fréchet distance
Metric embeddings
Random projections
Title Probabilistic Embeddings of the Fréchet Distance
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303340&ppg=226
http://link.springer.com/10.1007/978-3-030-04693-4_14
Volume 11312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLagXBAHvsXYQDmwUxWUxI7jHDhUU6tpGhOHDe1mxV8wRBvUBoT4R_sd_LG9rx03bdllXKI2ihL7fZw37-djQt5RrhnTRZk6xXKMVpm0ga922tRGiSJXuRDY4PzxjB9fsJPL8nIoYvfdJZ16r__c2lfyP6jCOcAVu2TvgOz6pnACfgO-cASE4bhj_G6HWUN5MbKB_74KrYc-BxBoQ8eT719acPm_zoc948Efnvfp-MWQR4cX_Fd7eFQeTvKrbyG-Oo_FuuEZn5bwumP5LLI5j6dzZY3PVcXKglmfaAfkOyTy7NZrCOdvVx9O-xTFWdv5yq9x3EUiKpXNqEMudqIOMeq4E7ccQmdbbip8Jr0fHlgAYrsWqGJwZoJ2s0H7cuRUpIHDdK1RxcbHuQgMMf_o_c1SD7gzFqzWNGUStzi_DwMYkQeT6cnp53X4DZxx6hPED-P_uk84hVFhG1AcNQ1ETcMsNlowb3vklrOyk1_3Zsv5E_IIW1kS7DEB-T0l9-ziGXkcIUh6CJ6TfAvnZMA5aV0COCez5d9rxDiJGL8gF7Pp-dFx2u-lkf4oGO1SXWqT1ZQbVmYWe4IqXYEpYhUvNDi1pa1qy8Ba5VmjamGMaoQWijmTuaZkrqIvyWjRLuwrkmROcIebUSrrWC2EctzQygrKVCEMa_ZIGqcvfca_LzPWYbIryUGSlIHzySsJ1v8eGUcZSbx8JSOVNghXUgnClV64EoX7-k5X7yOJFnIn4Oo9IKNu-dO-ASuyU2_7FXEDxklm7A
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Approximation+and+Online+Algorithms&rft.au=Driemel%2C+Anne&rft.au=Krivo%C5%A1ija%2C+Amer&rft.atitle=Probabilistic+Embeddings+of+the+Fr%C3%A9chet+Distance&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030046927&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=218&rft.epage=237&rft_id=info:doi/10.1007%2F978-3-030-04693-4_14
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303340-l.jpg