Approximation Algorithms on Multiple Two-Stage Flowshops

This paper considers the problem of scheduling multiple two-stage flowshops that minimizes the makespan, where the number of flowshops is part of the input. We study the relationship between the problem and the classical makespan problem. We prove that if there exists an $$\alpha $$ -approximation a...

Full description

Saved in:
Bibliographic Details
Published inComputing and Combinatorics Vol. 10976; pp. 713 - 725
Main Authors Wu, Guangwei, Chen, Jianer
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319947754
3319947753
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-94776-1_59

Cover

More Information
Summary:This paper considers the problem of scheduling multiple two-stage flowshops that minimizes the makespan, where the number of flowshops is part of the input. We study the relationship between the problem and the classical makespan problem. We prove that if there exists an $$\alpha $$ -approximation algorithm for the makespan problem, then for the multiple two-stage flowshop scheduling problem, we can construct a $$2 \alpha $$ -approximation algorithm for the general case, and $$(\alpha + 1/2)$$ -approximation algorithms for two restricted cases. As a result, we get a $$(2 + \epsilon )$$ -approximation algorithm for the general case and a $$(1.5 + \epsilon )$$ -approximation algorithm for the two restricted cases, which significantly improve the previous approximation ratios 2.6 and 11/6, respectively.
Bibliography:Original Abstract: This paper considers the problem of scheduling multiple two-stage flowshops that minimizes the makespan, where the number of flowshops is part of the input. We study the relationship between the problem and the classical makespan problem. We prove that if there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation algorithm for the makespan problem, then for the multiple two-stage flowshop scheduling problem, we can construct a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \alpha $$\end{document}-approximation algorithm for the general case, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha + 1/2)$$\end{document}-approximation algorithms for two restricted cases. As a result, we get a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + \epsilon )$$\end{document}-approximation algorithm for the general case and a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1.5 + \epsilon )$$\end{document}-approximation algorithm for the two restricted cases, which significantly improve the previous approximation ratios 2.6 and 11/6, respectively.
This work is supported by the National Natural Science Foundation of China under grants 61420106009, 61672536 and 61472449, Scientific Research Fund of Hunan Provincial Education Department under grant 16C1660.
ISBN:9783319947754
3319947753
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-94776-1_59