Implementations of FSSP Algorithms on Fault-Tolerant Cellular Arrays

The firing squad synchronization problem (FSSP, for short) on cellular automata has been studied extensively for more than fifty years, and a rich variety of FSSP algorithms has been proposed. Here we study the classical FSSP on a model of fault-tolerant cellular automata that might have possibly so...

Full description

Saved in:
Bibliographic Details
Published inCellular Automata Vol. 11115; pp. 274 - 285
Main Authors Umeo, Hiroshi, Kamikawa, Naoki, Maeda, Masashi, Fujita, Gen
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783319998121
3319998129
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-99813-8_25

Cover

Abstract The firing squad synchronization problem (FSSP, for short) on cellular automata has been studied extensively for more than fifty years, and a rich variety of FSSP algorithms has been proposed. Here we study the classical FSSP on a model of fault-tolerant cellular automata that might have possibly some defective cells and present the first state-efficient implementations of fault-tolerant FSSP algorithms for one-dimensional (1D) and two-dimensional (2D) arrays. It is shown that, under some constraints on the distribution and length of defective cells, any 1D cellular array of length n with p defective cell segments can be synchronized in $$2n-2+p$$ steps and the algorithm is realized on a 1D cellular automaton with 164 states and 4792 transition rules. In addition, we give a smaller implementation for the 2D FSSP that can synchronize any 2D rectangular array of size $$ m \times n$$ , including O(mn) rectangle-shaped isolated defective zones, exactly in $$2(m+n)-4$$ steps on a cellular automaton with only 6 states and 939 transition rules.
AbstractList The firing squad synchronization problem (FSSP, for short) on cellular automata has been studied extensively for more than fifty years, and a rich variety of FSSP algorithms has been proposed. Here we study the classical FSSP on a model of fault-tolerant cellular automata that might have possibly some defective cells and present the first state-efficient implementations of fault-tolerant FSSP algorithms for one-dimensional (1D) and two-dimensional (2D) arrays. It is shown that, under some constraints on the distribution and length of defective cells, any 1D cellular array of length n with p defective cell segments can be synchronized in $$2n-2+p$$ steps and the algorithm is realized on a 1D cellular automaton with 164 states and 4792 transition rules. In addition, we give a smaller implementation for the 2D FSSP that can synchronize any 2D rectangular array of size $$ m \times n$$ , including O(mn) rectangle-shaped isolated defective zones, exactly in $$2(m+n)-4$$ steps on a cellular automaton with only 6 states and 939 transition rules.
Author Umeo, Hiroshi
Maeda, Masashi
Kamikawa, Naoki
Fujita, Gen
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Umeo
  fullname: Umeo, Hiroshi
  email: umeo@cyt.osakac.ac.jp
  organization: University of Osaka Electro-Communication, Neyagawa-shi, Japan
– sequence: 2
  givenname: Naoki
  surname: Kamikawa
  fullname: Kamikawa, Naoki
  organization: University of Osaka Electro-Communication, Neyagawa-shi, Japan
– sequence: 3
  givenname: Masashi
  surname: Maeda
  fullname: Maeda, Masashi
  organization: University of Osaka Electro-Communication, Neyagawa-shi, Japan
– sequence: 4
  givenname: Gen
  surname: Fujita
  fullname: Fujita, Gen
  organization: University of Osaka Electro-Communication, Neyagawa-shi, Japan
BookMark eNpVkMFOAjEQhquiEZA38LAvUG2n3W57JChKQqIJeG66SxfQsru25eDb2wUvnibzzfyTzDdCg6ZtLEL3lDxQQopHVUjMMKMKKyUpw1JDfoEmCbMET0xeoiEVlGLGuLr6NwM6QEPCCGBVcHaDRpTk6SyQAm7RJIRP0jdSCQZD9LQ4dM4ebBNN3LdNyNo6m69W79nUbVu_j7tDQk02N0cX8bp11psmZjPr3NEZn029Nz_hDl3XxgU7-atj9DF_Xs9e8fLtZTGbLnEHnEVshKgFYSavcsVpCcLIkhBbScFqWQHwHEpL6o0CvimEopUplLBcmLTPiAU2RnC-Gzq_b7bW67Jtv4KmRPfedJKgmU4a9MmR7r2lED-HOt9-H22I2vapKr3sjat2povWBy1AcqW4Bk41JJe_pVlsWA
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 511.3
DOI 10.1007/978-3-319-99813-8_25
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISBN 9783319998138
3319998137
EISSN 1611-3349
Editor Manzoni, Luca
El Yacoubi, Samira
Dennunzio, Alberto
Nishinari, Katsuhiro
Mauri, Giancarlo
Editor_xml – sequence: 1
  fullname: Manzoni, Luca
– sequence: 2
  fullname: Nishinari, Katsuhiro
– sequence: 3
  fullname: Mauri, Giancarlo
– sequence: 4
  fullname: El Yacoubi, Samira
– sequence: 5
  fullname: Dennunzio, Alberto
EndPage 285
ExternalDocumentID EBC6284994_241_283
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-a66f603a5c5941b26a8b00ec863f8c22452be0fd924d7691ca796e46ac5930e23
ISBN 9783319998121
3319998129
ISSN 0302-9743
IngestDate Wed Sep 17 03:15:33 EDT 2025
Thu Apr 10 22:31:03 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-a66f603a5c5941b26a8b00ec863f8c22452be0fd924d7691ca796e46ac5930e23
Notes Original Abstract: The firing squad synchronization problem (FSSP, for short) on cellular automata has been studied extensively for more than fifty years, and a rich variety of FSSP algorithms has been proposed. Here we study the classical FSSP on a model of fault-tolerant cellular automata that might have possibly some defective cells and present the first state-efficient implementations of fault-tolerant FSSP algorithms for one-dimensional (1D) and two-dimensional (2D) arrays. It is shown that, under some constraints on the distribution and length of defective cells, any 1D cellular array of length n with p defective cell segments can be synchronized in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-2+p$$\end{document} steps and the algorithm is realized on a 1D cellular automaton with 164 states and 4792 transition rules. In addition, we give a smaller implementation for the 2D FSSP that can synchronize any 2D rectangular array of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m \times n$$\end{document}, including O(mn) rectangle-shaped isolated defective zones, exactly in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2(m+n)-4$$\end{document} steps on a cellular automaton with only 6 states and 939 transition rules.
OCLC 1051002072
PQID EBC6284994_241_283
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_99813_8_25
proquest_ebookcentralchapters_6284994_241_283
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 13th International Conference on Cellular Automata for Research and Industry, ACRI 2018, Como, Italy, September 17-21, 2018, Proceedings
PublicationTitle Cellular Automata
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0002089632
ssj0002792
Score 1.8742896
Snippet The firing squad synchronization problem (FSSP, for short) on cellular automata has been studied extensively for more than fifty years, and a rich variety of...
SourceID springer
proquest
SourceType Publisher
StartPage 274
Title Implementations of FSSP Algorithms on Fault-Tolerant Cellular Arrays
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6284994&ppg=283
http://link.springer.com/10.1007/978-3-319-99813-8_25
Volume 11115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLa6cgEOGwMEG6Ac2KkKSu3ESQ4cqqldNY0JaS3azXIch2UkzdQmQnDlj_Bb-GU8x3GThl3GJaoiN3Hee3r-3vP7nhF67xHhJA6ObQprhwpQEpsLR9pCegEgaEf4NUns0yWdL93za-96MPjVqVqqyuiD-Hkvr-R_tAr3QK-KJfsAzW4fCjfgN-gXrqBhuPbA726aVfcVkFlW15BOqrLINcWslt0y1_nPeQor4E26dak8T7_x71z7VHhcm4yWMde8nQ3v_GFW3aYaW54ZvlhT9p6bovNtGd3s6urzaJJ9LdZpeZOrLYiTU3wycWa8ykp7UWQS1sRy1M55veY_NJxXkpKbjxfNZsZlUdY1YiNz3oRxP938xDjo5SdMfrKX4WyTbDsBLSGqLQKAjnHHDxJw2hD2aD8otZ-mqvsi0d1Oje_Vx_00yzjWJwH9s0J0i0IUgUu9jdgBw94e2oMJDNGjyfT84ss2UYedAJxU25NMdVzUW1N6VoowZGYd6pZO7Vd0yJr3vXInrOntxNcAZ3GAnirSi6XYKCC_Z2ggV4do36jAalRwiJ50-lc-R9OeJVhFYilLsFpLsIrVn9-7VmAZK7C0FbxAy9l0cTq3m3M57DvsktLmlCbUIdwTXuiOI0x5AM5bioCSJBBY7eVH0kliCO1jn4Zjwf2QSpdyGE8ciclLNFwVK_kKWTiJAhJDCO75iatCX8BOIvFdCbAyFAF5jWwjIFZXDzQly0KLY8MowKswdBkAUYbV-JGRIlPDN8y05QbxM8JA_KwWP1PiP3rQ6GP0uLXvN2hYriv5FhBpGb1rbOYvpKKBgg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Cellular+Automata&rft.au=Umeo%2C+Hiroshi&rft.au=Kamikawa%2C+Naoki&rft.au=Maeda%2C+Masashi&rft.au=Fujita%2C+Gen&rft.atitle=Implementations+of+FSSP+Algorithms+on%C2%A0Fault-Tolerant+Cellular+Arrays&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319998121&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=274&rft.epage=285&rft_id=info:doi/10.1007%2F978-3-319-99813-8_25
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6284994-l.jpg