Infringement of Individual Privacy via Mining Differentially Private GWAS Statistics

Individual privacy in genomic era is becoming a growing concern as more individuals get their genomes sequenced or genotyped. Infringement of genetic privacy can be conducted even without raw genotypes or sequencing data. Studies have reported that summary statistics from Genome Wide Association Stu...

Full description

Saved in:
Bibliographic Details
Published inBig Data Computing and Communications Vol. 9784; pp. 355 - 366
Main Authors Wang, Yue, Wen, Jia, Wu, Xintao, Shi, Xinghua
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319425528
3319425528
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-42553-5_30

Cover

More Information
Summary:Individual privacy in genomic era is becoming a growing concern as more individuals get their genomes sequenced or genotyped. Infringement of genetic privacy can be conducted even without raw genotypes or sequencing data. Studies have reported that summary statistics from Genome Wide Association Studies (GWAS) can be exploited to threat individual privacy. In this study, we show that even with differentially private GWAS statistics, there is still a risk for leaking individual privacy. Specifically, we constructed a Bayesian network through mining public GWAS statistics, and evaluated two attacks, namely trait inference attack and identity inference attack, for infringement of individual privacy not only for GWAS participants but also regular individuals. We used both simulation and real human genetic data from 1000 Genome Project to evaluate our methods. Our results demonstrated that unexpected privacy breaches could occur and attackers can derive identity information and private information by utilizing these algorithms. Hence, more methodological studies should be invested to understand the infringement and protection of genetic privacy.
ISBN:9783319425528
3319425528
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-42553-5_30