An Improved Finger Vein Recognition Model with a Residual Attention Mechanism

Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the origi...

Full description

Saved in:
Bibliographic Details
Published inBiometric Recognition Vol. 12878; pp. 231 - 239
Main Authors Liu, Weiye, Lu, Huimin, Li, Yupeng, Wang, Yifan, Dang, Yuanyuan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030866076
9783030866075
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-86608-2_26

Cover

Abstract Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the original network to adapt to the training data scale. Then, to prevent excessively repeated operations of linear extraction, we introduce the Inception unit to replace some residual units in the original model. The multi-branch structure can learn vein features from different aspects. Besides that, with the attention block, primary vein patterns can be extracted and the bottom-up, top-down structure activates feature maps with learned attention weights. The experimental results show that our model acquires 98.58% and 97.54% accuracy on two public datasets, respectively. Compared with state-of-the-art models, the proposed model has fewer parameters and better performance.
AbstractList Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the original network to adapt to the training data scale. Then, to prevent excessively repeated operations of linear extraction, we introduce the Inception unit to replace some residual units in the original model. The multi-branch structure can learn vein features from different aspects. Besides that, with the attention block, primary vein patterns can be extracted and the bottom-up, top-down structure activates feature maps with learned attention weights. The experimental results show that our model acquires 98.58% and 97.54% accuracy on two public datasets, respectively. Compared with state-of-the-art models, the proposed model has fewer parameters and better performance.
Author Liu, Weiye
Li, Yupeng
Lu, Huimin
Wang, Yifan
Dang, Yuanyuan
Author_xml – sequence: 1
  givenname: Weiye
  surname: Liu
  fullname: Liu, Weiye
– sequence: 2
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
  email: luhuimin@ccut.edu.cn
– sequence: 3
  givenname: Yupeng
  surname: Li
  fullname: Li, Yupeng
– sequence: 4
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
– sequence: 5
  givenname: Yuanyuan
  surname: Dang
  fullname: Dang, Yuanyuan
BookMark eNpFkE1OwzAQhc2vaKE3YJELGGyP459lhShUKgJVwNZykwkEWqfEKVynZ-nJcFskVjN6M2807-uT49AEJOSSsyvOmL622lCgDBg1SjFDhRPqgPQhKTtBHpIeV5xTAGmP_gdaHZNe6gW1WsIp6XOhjFCa5fqMDGL8YIwJza3hpkeehmGzHi-WbfONZTaqwxu22SvWIZti0byFuqubkD00Jc6zn7p736z9Zj3FWJcrP8-GXYdhv4HFuw91XFyQk8rPIw7-6jl5Gd0-39zTyePd-GY4oUshoaM25wAz72VulK6MrXxlAIsCSp4XyLiwXIFm3ggwJfdWzNBUvpRW6wpzUcE5Efu7cdnuvnazpvmMjjO3pecSPQcuYXA7WG5LL5nk3pTyfq0wdg63riKFaP08JVh22EantADOk58xJ6SEXwH4chM
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006
DOI 10.1007/978-3-030-86608-2_26
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3030866084
9783030866082
EISSN 1611-3349
Editor Fang, Yuchun
Liu, Manhua
Feng, Jianjiang
Zhang, Junping
Editor_xml – sequence: 1
  fullname: Liu, Manhua
– sequence: 2
  fullname: Zhang, Junping
– sequence: 3
  fullname: Fang, Yuchun
– sequence: 4
  fullname: Feng, Jianjiang
EndPage 239
ExternalDocumentID EBC6723118_300_244
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z83
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-95133baa45867f89faf83ecc3d15ce012916370a8238d1a92be8fad4977fe52f3
ISBN 3030866076
9783030866075
ISSN 0302-9743
IngestDate Wed Sep 17 04:37:43 EDT 2025
Thu Apr 17 08:30:16 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK7882.B56
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-95133baa45867f89faf83ecc3d15ce012916370a8238d1a92be8fad4977fe52f3
OCLC 1268267057
PQID EBC6723118_300_244
PageCount 9
ParticipantIDs springer_books_10_1007_978_3_030_86608_2_26
proquest_ebookcentralchapters_6723118_300_244
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 15th Chinese Conference, CCBR 2021, Shanghai, China, September 10-12, 2021, Proceedings
PublicationTitle Biometric Recognition
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002719818
ssj0002792
Score 2.020171
Snippet Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a...
SourceID springer
proquest
SourceType Publisher
StartPage 231
SubjectTerms Attention mechanism
Biometrics
Deep learning
Finger vein recognition
Inception module
Title An Improved Finger Vein Recognition Model with a Residual Attention Mechanism
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6723118&ppg=244
http://link.springer.com/10.1007/978-3-030-86608-2_26
Volume 12878
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27btswFCUSZ2k7tEkbNH2BQzIVLCRSD2pUDbtG0ARBkQTZCEqigCyKU6tLv8bf4i_rvSKpyIKXdJENWRRoHpm-r3MuIaeR1JmsAs0qHVcsKqOEodvMgkzHQvMyKDTynS8uk8VNdH4X3_lG445d0hbfyr87eSX_gyqcA1yRJfsMZPubwgl4D_jCERCG48j43Q6z2hQsEudbWwjvioB8St1rI59N-Vke2LgBGJZzKzp4a-6b4ZiuH5otVrcDtH35ZVaWqZW3rSuKvDBIFPaqgy5YwMNRsMAHC0fhxkHEK_-x5WAKlLNJksB2N-l3THCz5M79d1hyAUMZjgXMFN8hd82t8ONI7nr2fZqkYHSGUmGiDS9aPjLsEobZdNcyZZ_sw9wm5CCfnf-87WNqPA0zMECQwuPnnViRpafvMaBP7prmlqMxyo13Jsf1G_IKaSgU-SEw8UOyZ5oj8to34aBuTz4iLweKkm_JVd5s1h5wagGnCDgdAE47wCkCvlnrzdoDTXugaQ_0O3Izn11PF8w1zWBLHomWZdiwp9A6imWS1jKrdS0F_E5FFcalwbAjWOBpoCXYalWoM14YWesqAj-gNjGvxTGZNA-NeU9oGoo0NkLA5yU4xuBL6KiAP6VSmkxIk54Q5tdKdal9V09c2pVZqRGQJ-SrX1CFl6-U18wGJJRQgITqkFCIxIdn3v0jefH0xH8ik_b3H_MZDMa2-OKek3-I9meP
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Biometric+Recognition&rft.atitle=An%C2%A0Improved+Finger+Vein+Recognition+Model+with%C2%A0a%C2%A0Residual+Attention+Mechanism&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030866075&rft.volume=12878&rft_id=info:doi/10.1007%2F978-3-030-86608-2_26&rft.externalDBID=244&rft.externalDocID=EBC6723118_300_244
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6723118-l.jpg