An Improved Finger Vein Recognition Model with a Residual Attention Mechanism
Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the origi...
        Saved in:
      
    
          | Published in | Biometric Recognition Vol. 12878; pp. 231 - 239 | 
|---|---|
| Main Authors | , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2021
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 3030866076 9783030866075  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-030-86608-2_26 | 
Cover
| Abstract | Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the original network to adapt to the training data scale. Then, to prevent excessively repeated operations of linear extraction, we introduce the Inception unit to replace some residual units in the original model. The multi-branch structure can learn vein features from different aspects. Besides that, with the attention block, primary vein patterns can be extracted and the bottom-up, top-down structure activates feature maps with learned attention weights. The experimental results show that our model acquires 98.58% and 97.54% accuracy on two public datasets, respectively. Compared with state-of-the-art models, the proposed model has fewer parameters and better performance. | 
    
|---|---|
| AbstractList | Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a novel model architecture for finger vein recognition based on an improved residual attention network. First, we squeeze the size of the original network to adapt to the training data scale. Then, to prevent excessively repeated operations of linear extraction, we introduce the Inception unit to replace some residual units in the original model. The multi-branch structure can learn vein features from different aspects. Besides that, with the attention block, primary vein patterns can be extracted and the bottom-up, top-down structure activates feature maps with learned attention weights. The experimental results show that our model acquires 98.58% and 97.54% accuracy on two public datasets, respectively. Compared with state-of-the-art models, the proposed model has fewer parameters and better performance. | 
    
| Author | Liu, Weiye Li, Yupeng Lu, Huimin Wang, Yifan Dang, Yuanyuan  | 
    
| Author_xml | – sequence: 1 givenname: Weiye surname: Liu fullname: Liu, Weiye – sequence: 2 givenname: Huimin surname: Lu fullname: Lu, Huimin email: luhuimin@ccut.edu.cn – sequence: 3 givenname: Yupeng surname: Li fullname: Li, Yupeng – sequence: 4 givenname: Yifan surname: Wang fullname: Wang, Yifan – sequence: 5 givenname: Yuanyuan surname: Dang fullname: Dang, Yuanyuan  | 
    
| BookMark | eNpFkE1OwzAQhc2vaKE3YJELGGyP459lhShUKgJVwNZykwkEWqfEKVynZ-nJcFskVjN6M2807-uT49AEJOSSsyvOmL622lCgDBg1SjFDhRPqgPQhKTtBHpIeV5xTAGmP_gdaHZNe6gW1WsIp6XOhjFCa5fqMDGL8YIwJza3hpkeehmGzHi-WbfONZTaqwxu22SvWIZti0byFuqubkD00Jc6zn7p736z9Zj3FWJcrP8-GXYdhv4HFuw91XFyQk8rPIw7-6jl5Gd0-39zTyePd-GY4oUshoaM25wAz72VulK6MrXxlAIsCSp4XyLiwXIFm3ggwJfdWzNBUvpRW6wpzUcE5Efu7cdnuvnazpvmMjjO3pecSPQcuYXA7WG5LL5nk3pTyfq0wdg63riKFaP08JVh22EantADOk58xJ6SEXwH4chM | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer Nature Switzerland AG 2021 | 
    
| Copyright_xml | – notice: Springer Nature Switzerland AG 2021 | 
    
| DBID | FFUUA | 
    
| DEWEY | 006 | 
    
| DOI | 10.1007/978-3-030-86608-2_26 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 3030866084 9783030866082  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Fang, Yuchun Liu, Manhua Feng, Jianjiang Zhang, Junping  | 
    
| Editor_xml | – sequence: 1 fullname: Liu, Manhua – sequence: 2 fullname: Zhang, Junping – sequence: 3 fullname: Fang, Yuchun – sequence: 4 fullname: Feng, Jianjiang  | 
    
| EndPage | 239 | 
    
| ExternalDocumentID | EBC6723118_300_244 | 
    
| GroupedDBID | 38. AABBV AABLV ABNDO ACWLQ AEDXK AEJLV AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY FFUUA I4C IEZ OCUHQ ORHYB SBO TPJZQ TSXQS Z83 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-p243t-95133baa45867f89faf83ecc3d15ce012916370a8238d1a92be8fad4977fe52f3 | 
    
| ISBN | 3030866076 9783030866075  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 04:37:43 EDT 2025 Thu Apr 17 08:30:16 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| LCCallNum | TK7882.B56 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-p243t-95133baa45867f89faf83ecc3d15ce012916370a8238d1a92be8fad4977fe52f3 | 
    
| OCLC | 1268267057 | 
    
| PQID | EBC6723118_300_244 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_030_86608_2_26 proquest_ebookcentralchapters_6723118_300_244  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Cham  | 
    
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSeriesTitleAlternate | Lect.Notes Computer | 
    
| PublicationSubtitle | 15th Chinese Conference, CCBR 2021, Shanghai, China, September 10-12, 2021, Proceedings | 
    
| PublicationTitle | Biometric Recognition | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer International Publishing AG Springer International Publishing  | 
    
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing  | 
    
| RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti  | 
    
| SSID | ssj0002719818 ssj0002792  | 
    
| Score | 2.020171 | 
    
| Snippet | Deep learning-based Biometric authentication has become one of the most popular research subjects in the field of Computer Vision. In this paper, we propose a... | 
    
| SourceID | springer proquest  | 
    
| SourceType | Publisher | 
    
| StartPage | 231 | 
    
| SubjectTerms | Attention mechanism Biometrics Deep learning Finger vein recognition Inception module  | 
    
| Title | An Improved Finger Vein Recognition Model with a Residual Attention Mechanism | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6723118&ppg=244 http://link.springer.com/10.1007/978-3-030-86608-2_26  | 
    
| Volume | 12878 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27btswFCUSZ2k7tEkbNH2BQzIVLCRSD2pUDbtG0ARBkQTZCEqigCyKU6tLv8bf4i_rvSKpyIKXdJENWRRoHpm-r3MuIaeR1JmsAs0qHVcsKqOEodvMgkzHQvMyKDTynS8uk8VNdH4X3_lG445d0hbfyr87eSX_gyqcA1yRJfsMZPubwgl4D_jCERCG48j43Q6z2hQsEudbWwjvioB8St1rI59N-Vke2LgBGJZzKzp4a-6b4ZiuH5otVrcDtH35ZVaWqZW3rSuKvDBIFPaqgy5YwMNRsMAHC0fhxkHEK_-x5WAKlLNJksB2N-l3THCz5M79d1hyAUMZjgXMFN8hd82t8ONI7nr2fZqkYHSGUmGiDS9aPjLsEobZdNcyZZ_sw9wm5CCfnf-87WNqPA0zMECQwuPnnViRpafvMaBP7prmlqMxyo13Jsf1G_IKaSgU-SEw8UOyZ5oj8to34aBuTz4iLweKkm_JVd5s1h5wagGnCDgdAE47wCkCvlnrzdoDTXugaQ_0O3Izn11PF8w1zWBLHomWZdiwp9A6imWS1jKrdS0F_E5FFcalwbAjWOBpoCXYalWoM14YWesqAj-gNjGvxTGZNA-NeU9oGoo0NkLA5yU4xuBL6KiAP6VSmkxIk54Q5tdKdal9V09c2pVZqRGQJ-SrX1CFl6-U18wGJJRQgITqkFCIxIdn3v0jefH0xH8ik_b3H_MZDMa2-OKek3-I9meP | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Biometric+Recognition&rft.atitle=An%C2%A0Improved+Finger+Vein+Recognition+Model+with%C2%A0a%C2%A0Residual+Attention+Mechanism&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030866075&rft.volume=12878&rft_id=info:doi/10.1007%2F978-3-030-86608-2_26&rft.externalDBID=244&rft.externalDocID=EBC6723118_300_244 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6723118-l.jpg |