Exact Crossing Number Parameterized by Vertex Cover

We prove that the exact crossing number of a graph can be efficiently computed for simple graphs having bounded vertex cover. In more precise words, Crossing Number is in FPT when parameterized by the vertex cover size. This is a notable advance since we know only very few nontrivial examples of gra...

Full description

Saved in:
Bibliographic Details
Published inGraph Drawing and Network Visualization Vol. 11904; pp. 307 - 319
Main Authors Hliněný, Petr, Sankaran, Abhisekh
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030358011
9783030358013
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-35802-0_24

Cover

Abstract We prove that the exact crossing number of a graph can be efficiently computed for simple graphs having bounded vertex cover. In more precise words, Crossing Number is in FPT when parameterized by the vertex cover size. This is a notable advance since we know only very few nontrivial examples of graph classes with unbounded and yet efficiently computable crossing number. Our result can be viewed as a strengthening of a previous result of Lokshtanov [arXiv, 2015] that Optimal Linear Arrangement is in FPT when parameterized by the vertex cover size, and we use a similar approach of reducing the problem to a tractable instance of Integer Quadratic Programming as in Lokshtanov’s paper.
AbstractList We prove that the exact crossing number of a graph can be efficiently computed for simple graphs having bounded vertex cover. In more precise words, Crossing Number is in FPT when parameterized by the vertex cover size. This is a notable advance since we know only very few nontrivial examples of graph classes with unbounded and yet efficiently computable crossing number. Our result can be viewed as a strengthening of a previous result of Lokshtanov [arXiv, 2015] that Optimal Linear Arrangement is in FPT when parameterized by the vertex cover size, and we use a similar approach of reducing the problem to a tractable instance of Integer Quadratic Programming as in Lokshtanov’s paper.
Author Sankaran, Abhisekh
Hliněný, Petr
Author_xml – sequence: 1
  givenname: Petr
  orcidid: 0000-0003-2125-1514
  surname: Hliněný
  fullname: Hliněný, Petr
  email: hlineny@fi.muni.cz
– sequence: 2
  givenname: Abhisekh
  surname: Sankaran
  fullname: Sankaran, Abhisekh
BookMark eNpFkN1OwzAMhQMMxDb2Blz0BQJ2nKbJJZr4kybgAhB3UdqlMNjaknRo8PS0GxJXto91LJ9vxAZVXXnGThHOECA7N5nmxIGAU6pBcLBC7rERdcpWeNlnQ1SInEiag_8F4oANu15wk0k6YiNEAhBCm-yYTWJ8h35SKQoaMrrcuKJNpqGOcVG9JnfrVe5D8uCCW_nWh8WPnyf5d_LsQ-s3ybT-8uGEHZZuGf3kr47Z09Xl4_SGz-6vb6cXM94ISS03EsmYUlGuS59q4UCgzoUvVZ5B5pRXbi5BaYeQYkFGgCwzFKhSiSafaxozsbsbm9D95oPN6_ojWgTbA7IdIEu2S2q3PGwPqDPJnakJ9efax9b63lX4qg1uWby5pksVbWq00tLYDosl1PQL6e9jyQ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-35802-0_24
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 303035802X
9783030358020
EISSN 1611-3349
Editor Tóth, Csaba D
Archambault, Daniel
Editor_xml – sequence: 1
  fullname: Archambault, Daniel
– sequence: 2
  fullname: Tóth, Csaba D
EndPage 319
ExternalDocumentID EBC5986849_228_318
GroupedDBID 38.
AABBV
ACBPT
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-941399f63b8fe582a0218b2ef6b707a6e6ad4068a1051c39204f712165419bd83
ISBN 3030358011
9783030358013
ISSN 0302-9743
IngestDate Wed Sep 17 04:01:48 EDT 2025
Wed May 28 23:32:44 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-941399f63b8fe582a0218b2ef6b707a6e6ad4068a1051c39204f712165419bd83
Notes P. Hliněný—Supported by the Czech Science Foundation, project no. 17-00837S.A. Sankaran—Supported by the Leverhulme Trust through a Research Project Grant on ‘Logical Fractals’.
OCLC 1130022897
ORCID 0000-0003-2125-1514
PQID EBC5986849_228_318
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_030_35802_0_24
proquest_ebookcentralchapters_5986849_228_318
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings
PublicationTitle Graph Drawing and Network Visualization
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002265123
ssj0002792
Score 2.030342
Snippet We prove that the exact crossing number of a graph can be efficiently computed for simple graphs having bounded vertex cover. In more precise words, Crossing...
SourceID springer
proquest
SourceType Publisher
StartPage 307
SubjectTerms Crossing number
Graph drawing
Parameterized complexity
Vertex cover
Title Exact Crossing Number Parameterized by Vertex Cover
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5986849&ppg=318
http://link.springer.com/10.1007/978-3-030-35802-0_24
Volume 11904
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbW7DLs0D2x7gUfdgs02JIf8mGHPjIERZfL2mA3QUpotCjgDrG3dvn1IyUrsbNeuosRCIZl81NIiuRHMfZJLWQCaMh4LCzwtEwUN4UEnsjCAP4zU-V66X2b5dOL9PRH1ku0O3ZJaz8v1vfySv4HVRxDXIkl-wBkNw_FAfyN-OIVEcbrjvM7DLP6bv3Uanp8sjK3gWc48yXd4_lVQ1TJ9SDJPqWT2dFzLI9qSo4fnXTVuZvi3O-mvjYrHw89tJdXDVxf9hfU5I7olMdkVWnCmTtKBD1Qqu6ihs9r78vOYdXCHeqZ313dL0kCmi9nXbJidtO6GrBxOE8iqJd-_IEoT4P4Q4g_7kQwt0G0wYYVDWZMiVfPPw3ELVTKuK3xQ-D1cE7dFaXvZtrpVumPx-3MtPSa9h8L0C_6wCdzmk3wWIt0j-0VKh2xx4eT07P5JhCH_mfWN9_UUdGnnvxbESEovHXiWzZtv6JHxrxvysG2ZSfT7hyY82fsKZFaImKboPyes0dQv2D7AYKog-Alkw7lKKAceZSjAcqR_RN5lCOH8it28XVyfjzl3bka_KdIZctLdFzKssqlVRVkShjy86yAKrdFXJgccrNEP08Z9L2TBTrQcVoViSDeW1LapZKv2ai-qeENi7LcyMQI0uRZWuS4d4fMQrysVAoZVNkB40EA2mX_u5Ljhf_cRtPxAKgOtBBKo3k5YOMgJU23Nzq01UbxaqlRvNqJV5N43z7o7nfsyXb9vmejdvULPqBH2dqP3Zr4CzMIaMQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graph+Drawing+and+Network+Visualization&rft.au=Hlin%C4%9Bn%C3%BD%2C+Petr&rft.au=Sankaran%2C+Abhisekh&rft.atitle=Exact+Crossing+Number+Parameterized+by+Vertex+Cover&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030358013&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=307&rft.epage=319&rft_id=info:doi/10.1007%2F978-3-030-35802-0_24
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5986849-l.jpg