Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models

2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging du...

Full description

Saved in:
Bibliographic Details
Published inMedical Image Computing and Computer Assisted Intervention - MICCAI 2022 Vol. 13437; pp. 202 - 212
Main Authors Yu, Xin, Yang, Qi, Tang, Yucheng, Gao, Riqiang, Bao, Shunxing, Cai, Leon Y., Lee, Ho Hin, Huo, Yuankai, Moore, Ann Zenobia, Ferrucci, Luigi, Landman, Bennett A.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031164482
9783031164484
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-16449-1_20

Cover

Abstract 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.
AbstractList 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen.
Author Yu, Xin
Gao, Riqiang
Cai, Leon Y.
Lee, Ho Hin
Yang, Qi
Bao, Shunxing
Landman, Bennett A.
Moore, Ann Zenobia
Huo, Yuankai
Tang, Yucheng
Ferrucci, Luigi
Author_xml – sequence: 1
  givenname: Xin
  surname: Yu
  fullname: Yu, Xin
  email: xin.yu@vanderbilt.edu
– sequence: 2
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
– sequence: 3
  givenname: Yucheng
  surname: Tang
  fullname: Tang, Yucheng
– sequence: 4
  givenname: Riqiang
  surname: Gao
  fullname: Gao, Riqiang
– sequence: 5
  givenname: Shunxing
  surname: Bao
  fullname: Bao, Shunxing
– sequence: 6
  givenname: Leon Y.
  surname: Cai
  fullname: Cai, Leon Y.
– sequence: 7
  givenname: Ho Hin
  surname: Lee
  fullname: Lee, Ho Hin
– sequence: 8
  givenname: Yuankai
  surname: Huo
  fullname: Huo, Yuankai
– sequence: 9
  givenname: Ann Zenobia
  surname: Moore
  fullname: Moore, Ann Zenobia
– sequence: 10
  givenname: Luigi
  surname: Ferrucci
  fullname: Ferrucci, Luigi
– sequence: 11
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
BookMark eNpFkNFO3DAQRQ0FxC7sH_DgH3A7HjuJ_YgCpUggqpb21fImE9YltUMc2t9vdhfUpxndqzuje5bsKKZIjF1I-CgBqk-2MkIJUFLIUmsrpEM4YEs1KzsBDtlCllIKpbT98N8weMQWoACFrbQ6YUupdIEGwNhTtsr5FwBgpdBgsWDP36h9bUJ84l9TDlNI0ff8px-Djw3xEHk9ppxFpubNu1y36XfYbvUj_96HhjL_G6YNvyIaeJ1i-37lhiKNfgp_iN-nlvp8zo4732davc0z9uPz9WP9Rdw93NzWl3diQK0mYdoCqsqYtUSUGj1UXnmL2EJh0Xcdrq32FRgkVZTa2K615axIo31Hcy91xnB_Nw_j3IxGt07pOTsJbgvWzWCdcjMtt-PotmDnkN6HhjG9vFKeHG1TDcVp9H2z8cNEY3bzX4O2dNJah8qqf_TAeGc
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 616.07540285
DOI 10.1007/978-3-031-16449-1_20
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 3031164490
9783031164491
EISSN 1611-3349
Editor Dou, Qi
Fletcher, P. Thomas
Speidel, Stefanie
Wang, Linwei
Li, Shuo
Editor_xml – sequence: 1
  fullname: Dou, Qi
– sequence: 2
  fullname: Wang, Linwei
– sequence: 3
  fullname: Li, Shuo
– sequence: 4
  fullname: Fletcher, P. Thomas
– sequence: 5
  fullname: Speidel, Stefanie
EndPage 212
ExternalDocumentID EBC7088296_199_239
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z83
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-8d507788b122142a07a3a922d0592aff2b94a7082e356489fd9694a184afe7323
ISBN 3031164482
9783031164484
ISSN 0302-9743
IngestDate Wed Sep 17 04:02:51 EDT 2025
Mon Sep 22 03:03:06 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1637-1638
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-8d507788b122142a07a3a922d0592aff2b94a7082e356489fd9694a184afe7323
Notes X. Yu and Q. Yang—Equal contribution.
OCLC 1345280089
PQID EBC7088296_199_239
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_031_16449_1_20
proquest_ebookcentralchapters_7088296_199_239
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part VII
PublicationTitle Medical Image Computing and Computer Assisted Intervention - MICCAI 2022
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002732825
ssj0002792
Score 2.059508
Snippet 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively...
SourceID springer
proquest
SourceType Publisher
StartPage 202
SubjectTerms Abdominal slice generation
Body composition
Longitudinal data harmonization
Title Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7088296&ppg=239&c=UERG
http://link.springer.com/10.1007/978-3-031-16449-1_20
Volume 13437
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECYcdyk69B9N_8ChmQwVFEVL4tDBUFMkQRq0jRPYE0GZciEgkdNKXvI0eZa8Rl-md6IoyW6WdBEEgpDo-z6TvNN3R0I-MB0Z8HsMhpdSTwhuvDRjzONcjyVbwI7DYO7w15Pw4EwczcazweBPT7W0rtKPi-s780r-B1VoA1wxS_YeyLYPhQa4B3zhCgjDdWvzuxlmzV2ZWjTw4SXKbuzpDC7j0J3VgNZHHI2N_Dlto1M4BCMAIZkcjjjjrcp4vkazz_KWNfMmpPw979x82zJfA-TN0ocaHr2yufq_gHM_-2T8gQVicXDfGo0YjPscvPQ6XyEv9hK-N2EJLtheWWvDsMMkNSt75FgyHZ1e4IxWh41t789ZdoX5isY9zxbQrpVQeMDbhXUWEIes_HTcfCo5WVW1Aq2zUDO59aMfnG9FP1z0E6Xd-JRTGMa1TZPecJRhofZ9dEVFb34NYDEAd8rOr5md_0Os6hjYKqpuTme8tz3gVvX9z8rTF5vAyzx8m_R8xdkO2YEBDMmDyf7R8XkbAORYJqkrDMmwkqP95GVHhYlIbtTclorqfkUvCfSuV264S1tf-OuN0_QJeYTJNBSzXMDYT8kgK56Rx43rQxvbl9Dk8HBtz8mlIw3tSEMdaWhe3N5sEYa2hKHJlFrCUCTM7Q2ShfbIQjuyUEuWF-Tsy_40OfCaw0G8Ky6CyosNeDJRHKc-x6qBmkU60JJzA_4C18slT6XQEWxws2AcilgujQyhxY-FXmZg-uAlGRarIntFqNGCGeGbsb8A5zo0OsTHiDT0Q7iT_i7xnDVVLWFodNMLa7tSReinylD5UioeyF0yciZX2L1UrjY4YKUCBVipGiuFWL2-V-835GH3N3hLhtXvdfYOtsVV-r4h2F-x8K3v
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2022&rft.au=Yu%2C+Xin&rft.au=Yang%2C+Qi&rft.au=Tang%2C+Yucheng&rft.au=Gao%2C+Riqiang&rft.atitle=Reducing+Positional+Variance+in%C2%A0Cross-sectional+Abdominal+CT+Slices+with%C2%A0Deep+Conditional+Generative+Models&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031164484&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=202&rft.epage=212&rft_id=info:doi/10.1007%2F978-3-031-16449-1_20
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7088296-l.jpg