Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models
2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging du...
        Saved in:
      
    
          | Published in | Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 Vol. 13437; pp. 202 - 212 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer
    
        2022
     Springer Nature Switzerland  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 3031164482 9783031164484  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-031-16449-1_20 | 
Cover
| Abstract | 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen. | 
    
|---|---|
| AbstractList | 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively characterizing health relationships on aging. However, longitudinal analysis of body composition changes using 2D abdominal slices is challenging due to positional variance between longitudinal slices acquired in different years. To reduce the positional variance, we extend the conditional generative models to our C-SliceGen that takes an arbitrary axial slice in the abdominal region as the condition and generates a defined vertebral level slice by estimating the structural changes in the latent space. Experiments on 1170 subjects from an in-house dataset and 50 subjects from BTCV MICCAI Challenge 2015 show that our model can generate high quality images in terms of realism and similarity. External experiments on 20 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset that contains longitudinal single abdominal slices validate that our method can harmonize the slice positional variance in terms of muscle and visceral fat area. Our approach provides a promising direction of mapping slices from different vertebral levels to a target slice to reduce positional variance for single slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen. | 
    
| Author | Yu, Xin Gao, Riqiang Cai, Leon Y. Lee, Ho Hin Yang, Qi Bao, Shunxing Landman, Bennett A. Moore, Ann Zenobia Huo, Yuankai Tang, Yucheng Ferrucci, Luigi  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Yu fullname: Yu, Xin email: xin.yu@vanderbilt.edu – sequence: 2 givenname: Qi surname: Yang fullname: Yang, Qi – sequence: 3 givenname: Yucheng surname: Tang fullname: Tang, Yucheng – sequence: 4 givenname: Riqiang surname: Gao fullname: Gao, Riqiang – sequence: 5 givenname: Shunxing surname: Bao fullname: Bao, Shunxing – sequence: 6 givenname: Leon Y. surname: Cai fullname: Cai, Leon Y. – sequence: 7 givenname: Ho Hin surname: Lee fullname: Lee, Ho Hin – sequence: 8 givenname: Yuankai surname: Huo fullname: Huo, Yuankai – sequence: 9 givenname: Ann Zenobia surname: Moore fullname: Moore, Ann Zenobia – sequence: 10 givenname: Luigi surname: Ferrucci fullname: Ferrucci, Luigi – sequence: 11 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A.  | 
    
| BookMark | eNpFkNFO3DAQRQ0FxC7sH_DgH3A7HjuJ_YgCpUggqpb21fImE9YltUMc2t9vdhfUpxndqzuje5bsKKZIjF1I-CgBqk-2MkIJUFLIUmsrpEM4YEs1KzsBDtlCllIKpbT98N8weMQWoACFrbQ6YUupdIEGwNhTtsr5FwBgpdBgsWDP36h9bUJ84l9TDlNI0ff8px-Djw3xEHk9ppxFpubNu1y36XfYbvUj_96HhjL_G6YNvyIaeJ1i-37lhiKNfgp_iN-nlvp8zo4732davc0z9uPz9WP9Rdw93NzWl3diQK0mYdoCqsqYtUSUGj1UXnmL2EJh0Xcdrq32FRgkVZTa2K615axIo31Hcy91xnB_Nw_j3IxGt07pOTsJbgvWzWCdcjMtt-PotmDnkN6HhjG9vFKeHG1TDcVp9H2z8cNEY3bzX4O2dNJah8qqf_TAeGc | 
    
| ContentType | Book Chapter | 
    
| Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 | 
    
| Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 | 
    
| DBID | FFUUA | 
    
| DEWEY | 616.07540285 | 
    
| DOI | 10.1007/978-3-031-16449-1_20 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Applied Sciences Computer Science  | 
    
| EISBN | 3031164490 9783031164491  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Dou, Qi Fletcher, P. Thomas Speidel, Stefanie Wang, Linwei Li, Shuo  | 
    
| Editor_xml | – sequence: 1 fullname: Dou, Qi – sequence: 2 fullname: Wang, Linwei – sequence: 3 fullname: Li, Shuo – sequence: 4 fullname: Fletcher, P. Thomas – sequence: 5 fullname: Speidel, Stefanie  | 
    
| EndPage | 212 | 
    
| ExternalDocumentID | EBC7088296_199_239 | 
    
| GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z83 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-p243t-8d507788b122142a07a3a922d0592aff2b94a7082e356489fd9694a184afe7323 | 
    
| ISBN | 3031164482 9783031164484  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 04:02:51 EDT 2025 Mon Sep 22 03:03:06 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| LCCallNum | TA1637-1638 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-p243t-8d507788b122142a07a3a922d0592aff2b94a7082e356489fd9694a184afe7323 | 
    
| Notes | X. Yu and Q. Yang—Equal contribution. | 
    
| OCLC | 1345280089 | 
    
| PQID | EBC7088296_199_239 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_031_16449_1_20 proquest_ebookcentralchapters_7088296_199_239  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022 | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Cham  | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSeriesTitleAlternate | Lect.Notes Computer | 
    
| PublicationSubtitle | 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part VII | 
    
| PublicationTitle | Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer Springer Nature Switzerland  | 
    
| Publisher_xml | – name: Springer – name: Springer Nature Switzerland  | 
    
| RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti  | 
    
| SSID | ssj0002732825 ssj0002792  | 
    
| Score | 2.059508 | 
    
| Snippet | 2D low-dose single-slice abdominal computed tomography (CT) slice enables direct measurements of body composition, which are critical to quantitatively... | 
    
| SourceID | springer proquest  | 
    
| SourceType | Publisher | 
    
| StartPage | 202 | 
    
| SubjectTerms | Abdominal slice generation Body composition Longitudinal data harmonization  | 
    
| Title | Reducing Positional Variance in Cross-sectional Abdominal CT Slices with Deep Conditional Generative Models | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7088296&ppg=239&c=UERG http://link.springer.com/10.1007/978-3-031-16449-1_20  | 
    
| Volume | 13437 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29btswECYcdyk69B9N_8ChmQwVFEVL4tDBUFMkQRq0jRPYE0GZciEgkdNKXvI0eZa8Rl-md6IoyW6WdBEEgpDo-z6TvNN3R0I-MB0Z8HsMhpdSTwhuvDRjzONcjyVbwI7DYO7w15Pw4EwczcazweBPT7W0rtKPi-s780r-B1VoA1wxS_YeyLYPhQa4B3zhCgjDdWvzuxlmzV2ZWjTw4SXKbuzpDC7j0J3VgNZHHI2N_Dlto1M4BCMAIZkcjjjjrcp4vkazz_KWNfMmpPw979x82zJfA-TN0ocaHr2yufq_gHM_-2T8gQVicXDfGo0YjPscvPQ6XyEv9hK-N2EJLtheWWvDsMMkNSt75FgyHZ1e4IxWh41t789ZdoX5isY9zxbQrpVQeMDbhXUWEIes_HTcfCo5WVW1Aq2zUDO59aMfnG9FP1z0E6Xd-JRTGMa1TZPecJRhofZ9dEVFb34NYDEAd8rOr5md_0Os6hjYKqpuTme8tz3gVvX9z8rTF5vAyzx8m_R8xdkO2YEBDMmDyf7R8XkbAORYJqkrDMmwkqP95GVHhYlIbtTclorqfkUvCfSuV264S1tf-OuN0_QJeYTJNBSzXMDYT8kgK56Rx43rQxvbl9Dk8HBtz8mlIw3tSEMdaWhe3N5sEYa2hKHJlFrCUCTM7Q2ShfbIQjuyUEuWF-Tsy_40OfCaw0G8Ky6CyosNeDJRHKc-x6qBmkU60JJzA_4C18slT6XQEWxws2AcilgujQyhxY-FXmZg-uAlGRarIntFqNGCGeGbsb8A5zo0OsTHiDT0Q7iT_i7xnDVVLWFodNMLa7tSReinylD5UioeyF0yciZX2L1UrjY4YKUCBVipGiuFWL2-V-835GH3N3hLhtXvdfYOtsVV-r4h2F-x8K3v | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Computing+and+Computer+Assisted+Intervention+%E2%80%93+MICCAI+2022&rft.au=Yu%2C+Xin&rft.au=Yang%2C+Qi&rft.au=Tang%2C+Yucheng&rft.au=Gao%2C+Riqiang&rft.atitle=Reducing+Positional+Variance+in%C2%A0Cross-sectional+Abdominal+CT+Slices+with%C2%A0Deep+Conditional+Generative+Models&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031164484&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=202&rft.epage=212&rft_id=info:doi/10.1007%2F978-3-031-16449-1_20 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7088296-l.jpg |