Comparison of Privacy-Preserving Distributed Deep Learning Methods in Healthcare

Data privacy regulations pose an obstacle to healthcare centres and hospitals to share medical data with other organizations, which in turn impedes the process of building deep learning models in the healthcare domain. Distributed deep learning methods enable deep learning models to be trained witho...

Full description

Saved in:
Bibliographic Details
Published inMedical Image Understanding and Analysis Vol. 12722; pp. 457 - 471
Main Authors Gawali, Manish, Arvind, C. S., Suryavanshi, Shriya, Madaan, Harshit, Gaikwad, Ashrika, Bhanu Prakash, K. N., Kulkarni, Viraj, Pant, Aniruddha
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030804313
9783030804312
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-80432-9_34

Cover

Abstract Data privacy regulations pose an obstacle to healthcare centres and hospitals to share medical data with other organizations, which in turn impedes the process of building deep learning models in the healthcare domain. Distributed deep learning methods enable deep learning models to be trained without the need for sharing data from these centres while still preserving the privacy of the data at these centres. In this paper, we compare three privacy-preserving distributed learning techniques: federated learning, split learning, and SplitFed. We use these techniques to develop binary classification models for detecting tuberculosis from chest X-rays and compare them in terms of classification performance, communication and computational costs, and training time. We propose a novel distributed learning architecture called SplitFedv3, which performs better than split learning and SplitFedv2 in our experiments. We also propose alternate mini-batch training, a new training technique for split learning, that performs better than alternate client training, where clients take turns to train a model.
AbstractList Data privacy regulations pose an obstacle to healthcare centres and hospitals to share medical data with other organizations, which in turn impedes the process of building deep learning models in the healthcare domain. Distributed deep learning methods enable deep learning models to be trained without the need for sharing data from these centres while still preserving the privacy of the data at these centres. In this paper, we compare three privacy-preserving distributed learning techniques: federated learning, split learning, and SplitFed. We use these techniques to develop binary classification models for detecting tuberculosis from chest X-rays and compare them in terms of classification performance, communication and computational costs, and training time. We propose a novel distributed learning architecture called SplitFedv3, which performs better than split learning and SplitFedv2 in our experiments. We also propose alternate mini-batch training, a new training technique for split learning, that performs better than alternate client training, where clients take turns to train a model.
Author Gawali, Manish
Pant, Aniruddha
Bhanu Prakash, K. N.
Arvind, C. S.
Suryavanshi, Shriya
Gaikwad, Ashrika
Kulkarni, Viraj
Madaan, Harshit
Author_xml – sequence: 1
  givenname: Manish
  surname: Gawali
  fullname: Gawali, Manish
  email: manish.gawali@deeptek.ai
– sequence: 2
  givenname: C. S.
  surname: Arvind
  fullname: Arvind, C. S.
– sequence: 3
  givenname: Shriya
  surname: Suryavanshi
  fullname: Suryavanshi, Shriya
– sequence: 4
  givenname: Harshit
  surname: Madaan
  fullname: Madaan, Harshit
– sequence: 5
  givenname: Ashrika
  surname: Gaikwad
  fullname: Gaikwad, Ashrika
– sequence: 6
  givenname: K. N.
  surname: Bhanu Prakash
  fullname: Bhanu Prakash, K. N.
– sequence: 7
  givenname: Viraj
  surname: Kulkarni
  fullname: Kulkarni, Viraj
– sequence: 8
  givenname: Aniruddha
  surname: Pant
  fullname: Pant, Aniruddha
BookMark eNo1kMFOwzAMhgMMxDb2Bhz6AgEnTpv0iDZgSEPsAOcobT1WGG1Jukm8PdkGJ1u_9Vn2N2KDpm2IsWsBNwJA3-bacOSAwA0olDy3qE7YJMYYw0OWn7KhyITgiCo_Y6P_gcABG8Y-QlrhBRsJmQEqpUFeskkIHwAgtUzByCFbTtuvzvk6tE3SrpKlr3eu_OFLT4H8rm7ek1kdel8X256qZEbUJQtyvtlPnqlft1VI6iaZk9v069J5umLnK7cJNPmrY_b2cP86nfPFy-PT9G7BO6mw51laGV3Eb3QqlHQmJSdEprEwDkmVooBKQ7UqwVRpjoUqUgMyr6oSlDOaBI6ZPO4NnY_HkLdF234GK8DuBdpoyqKNGuxBlt0LjJA6Qp1vv7cUekt7qqSm925Trl3Xkw82y3QmUm2VSq3KFP4Cj-9wHA
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 616.0754
DOI 10.1007/978-3-030-80432-9_34
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Applied Sciences
Computer Science
EISBN 9783030804329
3030804321
EISSN 1611-3349
Editor Namburete, Ana I. L
Yaqub, Mohammad
Noble, J. Alison
Jiao, Jianbo
Papież, Bartłomiej W
Editor_xml – sequence: 1
  fullname: Jiao, Jianbo
– sequence: 2
  fullname: Namburete, Ana I. L
– sequence: 3
  fullname: Yaqub, Mohammad
– sequence: 4
  fullname: Papież, Bartłomiej W
– sequence: 5
  fullname: Noble, J. Alison
EndPage 471
ExternalDocumentID EBC6676157_445_464
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ARRAB
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-65d87b78375142a85ea11673b8a3e4c1b0d70dfc08d593b4b58029ddc04a87e13
ISBN 3030804313
9783030804312
ISSN 0302-9743
IngestDate Wed Sep 17 04:05:33 EDT 2025
Tue Oct 21 09:16:29 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-65d87b78375142a85ea11673b8a3e4c1b0d70dfc08d593b4b58029ddc04a87e13
OCLC 1260344702
PQID EBC6676157_445_464
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_030_80432_9_34
proquest_ebookcentralchapters_6676157_445_464
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12-14, 2021, Proceedings
PublicationTitle Medical Image Understanding and Analysis
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002725082
ssj0002792
Score 2.146625
Snippet Data privacy regulations pose an obstacle to healthcare centres and hospitals to share medical data with other organizations, which in turn impedes the process...
SourceID springer
proquest
SourceType Publisher
StartPage 457
SubjectTerms Distributed deep learning
Federated learning
Medical imaging
Privacy-preserving
Split learning
SplitFed
Title Comparison of Privacy-Preserving Distributed Deep Learning Methods in Healthcare
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6676157&ppg=464
http://link.springer.com/10.1007/978-3-030-80432-9_34
Volume 12722
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZGJ6FpBxhsGhtMPuxWGSX-kThHVsoKWicOgLhZcexMPax0tJu0_fV7L3WaH3CBSxRZcfTiz3Wfn9_3PUI-Z9qWUaIVc3EqGEwK-Ekl3DGlXMZ9xvMyQ6Lw9HsyuZYXt-q2qVRYsUtW9rj49yiv5DmoQhvgiizZJyC7eSk0wD3gC1dAGK4957cbZp3VMrU4wOc_84px1SapYDS8lhtpT4pRu-rg8PJ-9icv_jJMw8AlAzqeoo4ulsDymKDsF7X-6o_htCo1XWXPTjY5Y-2YAY97MYM6ZtiLOrYCXydfO_tMgao2KMPTXTh5uuYUP1iG25kX0JVhX84yE-KWHdVrmfQaqz_X8ZcRZt_GKjVSKoMPLX4xLBaGh-qhcsoW2QLbBuTlyfji280mtAZmgduJe_CN3WKttdR8R4tF-ZiZnf1G74i88jyudslrZKNQpImA4W_ICz_fIzth70DDyrzcI9vTkCSxTy4blOldSR-iTFsoU0SZ1ijTgDKdzWmD8ltyfTa-Gk1YKJzBFlyKFUuU06mFz03BHea5Vj7H4zZhdS68LGIbuTRyZRFppzJhpVU64plzRSRznfpYvCOD-d3cvyc0la5IYmvzUnPptbea28SjqF2W-KjwB4TVA2Wq4_2QU1ysh2VpeigekGE9mgYfX5paNxtgMMIADKaCwSAMH5749o_kVTPdD8lgdf_bH4HTuLKfwiT5D9DFaTI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Medical+Image+Understanding+and+Analysis&rft.atitle=Comparison+of+Privacy-Preserving+Distributed+Deep+Learning+Methods+in+Healthcare&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030804312&rft.volume=12722&rft_id=info:doi/10.1007%2F978-3-030-80432-9_34&rft.externalDBID=464&rft.externalDocID=EBC6676157_445_464
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6676157-l.jpg