Alzheimer's Disease Diagnosis Based on Moth Flame Optimization

Alzheimer’s disease (AD) is the most cause of dementia affecting senior’s age staring from 65 and over. The standard criteria for detecting AD is tedious and time consuming. In this paper, an automatic system for AD diagnosis is proposed. A principle of moth-flame optimization is used as features se...

Full description

Saved in:
Bibliographic Details
Published inGenetic and Evolutionary Computing Vol. 536; pp. 298 - 305
Main Authors Sayed, Gehad Ismail, Hassanien, Aboul Ella, Nassef, Tamer M., Pan, Jeng-Shyang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesAdvances in Intelligent Systems and Computing
Subjects
Online AccessGet full text
ISBN3319484893
9783319484891
ISSN2194-5357
2194-5365
DOI10.1007/978-3-319-48490-7_35

Cover

Abstract Alzheimer’s disease (AD) is the most cause of dementia affecting senior’s age staring from 65 and over. The standard criteria for detecting AD is tedious and time consuming. In this paper, an automatic system for AD diagnosis is proposed. A principle of moth-flame optimization is used as features selection algorithm and support vector machine classifier is adopted to distinguish three kinds of classes including Normal, AD and Cognitive Impairment. The main objective of this paper is to aid physicians in detecting AD and to compare two different anatomical views of the brain and identify the best representative one. The performance of this algorithm is evaluated and compared with grey wolf optimizer and genetic algorithm. A benchmark dataset consists of 20 patients for each class is adopted. The experimental results show the efficiency of the proposed system in terms of Recall, Precision, Accuracy and F-Score.
AbstractList Alzheimer’s disease (AD) is the most cause of dementia affecting senior’s age staring from 65 and over. The standard criteria for detecting AD is tedious and time consuming. In this paper, an automatic system for AD diagnosis is proposed. A principle of moth-flame optimization is used as features selection algorithm and support vector machine classifier is adopted to distinguish three kinds of classes including Normal, AD and Cognitive Impairment. The main objective of this paper is to aid physicians in detecting AD and to compare two different anatomical views of the brain and identify the best representative one. The performance of this algorithm is evaluated and compared with grey wolf optimizer and genetic algorithm. A benchmark dataset consists of 20 patients for each class is adopted. The experimental results show the efficiency of the proposed system in terms of Recall, Precision, Accuracy and F-Score.
Author Sayed, Gehad Ismail
Nassef, Tamer M.
Hassanien, Aboul Ella
Pan, Jeng-Shyang
Author_xml – sequence: 1
  givenname: Gehad Ismail
  surname: Sayed
  fullname: Sayed, Gehad Ismail
  email: gehad.ismail@egyptscience.net
  organization: Scientific Research Group in Egypt (SRGE), Cairo, Egypt
– sequence: 2
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  organization: Scientific Research Group in Egypt (SRGE), Cairo, Egypt
– sequence: 3
  givenname: Tamer M.
  surname: Nassef
  fullname: Nassef, Tamer M.
  organization: Faculty of Computer and Software Engineering, Misr University for Science and Technology, Giza, Egypt
– sequence: 4
  givenname: Jeng-Shyang
  surname: Pan
  fullname: Pan, Jeng-Shyang
  organization: Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
BookMark eNo9UE1PAjEUrIpGQP6Bh715qr5-bduLCaKoCYaLnpvCPmAVtut2vfDr7YLx9ObNZCaZGZBeFSok5JrBLQPQd1YbKqhglkojLVDthDohA5GYA6FPSZ8nTJXI1dm_YKzo_QtKX5C-zZmUneWSjGL8BACmc2Y175P78Xa_wXKHzU3MHsuIPmK6fl2FWMbsIb1FFqrsLbSbbLr1O8zmdVvuyr1vy1BdkfOV30Yc_d0h-Zg-vU9e6Gz-_DoZz2jNpWhpzpVmhUXwnvvcLgyXK1SQLw0uTALIFSjwXHumCgvIoOunOBphC425GBJ-zI11U1ZrbNwihK_oGLhuKpemcsKl_u6wjOumSiZ5NNVN-P7B2DrsXEus2sZvlxtft9hEJzXn3DAnU5gAIX4BF3hn-Q
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-319-48490-7_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISBN 3319484907
9783319484907
EISSN 2194-5365
Editor Jiang, Xin Hua
Lin, Jerry Chun-Wei
Wang, Chia-Hung
Pan, Jeng-Shyang
Editor_xml – sequence: 1
  fullname: Jiang, Xin Hua
– sequence: 2
  fullname: Lin, Jerry Chun-Wei
– sequence: 3
  fullname: Wang, Chia-Hung
– sequence: 4
  fullname: Pan, Jeng-Shyang
EndPage 305
ExternalDocumentID EBC4722281_410_303
GroupedDBID 0D9
0DA
20A
38.
AABBV
AALVI
AAZIN
ABMNI
ABQUB
ACBPT
ACLYY
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CEWPM
CZZ
DBMNP
FFUUA
I4C
IEZ
MYL
SBO
SWYDZ
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ACGFS
RSU
ID FETCH-LOGICAL-p243t-62571d9e0aa2a69b824fe506c8eb8e50e25050a27a15d90e10849052e839d7e63
ISBN 3319484893
9783319484891
ISSN 2194-5357
IngestDate Tue Jul 29 19:52:35 EDT 2025
Thu May 29 16:14:40 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCallNum Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-62571d9e0aa2a69b824fe506c8eb8e50e25050a27a15d90e10849052e839d7e63
OCLC 961444849
PQID EBC4722281_410_303
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_319_48490_7_35
proquest_ebookcentralchapters_4722281_410_303
PublicationCentury 2000
PublicationDate 2016
2017
PublicationDateYYYYMMDD 2016-01-01
2017-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Advances in Intelligent Systems and Computing
PublicationSeriesTitleAlternate Advs in Intelligent Syst., Computing
PublicationSubtitle Proceedings of the Tenth International Conference on Genetic and Evolutionary Computing, November 7-9, 2016 Fuzhou City, Fujian Province, China
PublicationTitle Genetic and Evolutionary Computing
PublicationYear 2016
2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kacprzyk, Janusz
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
  organization: Systems Res Inst, Polish Academy of Sciences, Warsaw, Poland
SSID ssj0001761972
ssj0002381522
Score 1.9358368
Snippet Alzheimer’s disease (AD) is the most cause of dementia affecting senior’s age staring from 65 and over. The standard criteria for detecting AD is tedious and...
SourceID springer
proquest
SourceType Publisher
StartPage 298
SubjectTerms Alzheimer’s disease
Artificial intelligence
Features selection
Genetic algorithm (GA)
Grey wolf optimizer (GWO)
Moth flame optimization (MFO)
Swarm optimization algorithms
Title Alzheimer's Disease Diagnosis Based on Moth Flame Optimization
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4722281&ppg=303
http://link.springer.com/10.1007/978-3-319-48490-7_35
Volume 536
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbocEEcyipaFvmAxGFk5MR27FyQ2mpKVVG4tKg3y0kcMRJMCxk49NfznmPPJKGXcsliZbHf5zhvf4S8LQvlWi8VUzJ3TIqqZVWrHGtLI11Za68cWnTPPhcnF_L0Ul1uK-qF6JJ19b6-uTWu5H9QhTbAFaNk74Ds5qHQAMeAL2wBYdhOmN-xmnUZi8D5lG118Se-B33g-kIN6ZeUnJG_33zzy1AqRXeYcxPNMrAPjnbLbn4Ipw1aDs4AuvkxzBM__wLLyY8YpznUDmRT7UDSDk70iwMV18HHkUQp4JOURpq-hFZaIlWfpOSf5XboYYHRUHBnyZm2fQaScXZrwcW4MfxEF4dHmK4yN5mVII_gRdc_GRYFQ-N5rJCyQ3agZzNy_2Bx-unrVoWGKhiNsvam16LPqbQdxSBa8rZujuSKiSk8cBjnj8hDjDqhGA4CHX9M7vnVE7Kbam7QuAQ_JR82QL7raISRbmCkAUZ6taIIIw0w0iGMz8jF8eL86ITFGhjsOpdizUA81VlTeu5c7oqyMrlsveJFbXxl4MAjC8tdrl2mmpL7jOPYVO6B8W20L8RzMltdrfwLQl2tDTd1XTcgcwvTlAoozpX3unKFcH6PsEQLGyz10T247kfe2QlQe2SeCGbx8s6mFNhAaSssUNoGSluk9P4dn_6SPNjO51dktv71278G_m9dvYnz4C-aElY5
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Genetic+and+Evolutionary+Computing&rft.atitle=Alzheimer%27s+Disease+Diagnosis+Based+on+Moth+Flame+Optimization&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319484891&rft.volume=536&rft_id=info:doi/10.1007%2F978-3-319-48490-7_35&rft.externalDBID=303&rft.externalDocID=EBC4722281_410_303
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4722281-l.jpg