EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining

High-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces several new ideas to more efficiently discovers high-utility itemsets both in terms of executio...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence and Soft Computing Vol. 9413; pp. 530 - 546
Main Authors Zida, Souleymane, Fournier-Viger, Philippe, Lin, Jerry Chun-Wei, Wu, Cheng-Wei, Tseng, Vincent S.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319270593
3319270591
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-27060-9_44

Cover

Abstract High-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces several new ideas to more efficiently discovers high-utility itemsets both in terms of execution time and memory. EFIM relies on two upper-bounds named sub-tree utility and local utility to more effectively prune the search space. It also introduces a novel array-based utility counting technique named Fast Utility Counting to calculate these upper-bounds in linear time and space. Moreover, to reduce the cost of database scans, EFIM proposes efficient database projection and transaction merging techniques. An extensive experimental study on various datasets shows that EFIM is in general two to three orders of magnitude faster and consumes up to eight times less memory than the state-of-art algorithms d $$^2$$ HUP, HUI-Miner, HUP-Miner, FHM and UP-Growth+.
AbstractList High-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces several new ideas to more efficiently discovers high-utility itemsets both in terms of execution time and memory. EFIM relies on two upper-bounds named sub-tree utility and local utility to more effectively prune the search space. It also introduces a novel array-based utility counting technique named Fast Utility Counting to calculate these upper-bounds in linear time and space. Moreover, to reduce the cost of database scans, EFIM proposes efficient database projection and transaction merging techniques. An extensive experimental study on various datasets shows that EFIM is in general two to three orders of magnitude faster and consumes up to eight times less memory than the state-of-art algorithms d $$^2$$ HUP, HUI-Miner, HUP-Miner, FHM and UP-Growth+.
Author Tseng, Vincent S.
Zida, Souleymane
Lin, Jerry Chun-Wei
Wu, Cheng-Wei
Fournier-Viger, Philippe
Author_xml – sequence: 1
  givenname: Souleymane
  surname: Zida
  fullname: Zida, Souleymane
  email: esz2233@umoncton.ca
  organization: Department of Computer Science, University of Moncton, Moncton, Canada
– sequence: 2
  givenname: Philippe
  surname: Fournier-Viger
  fullname: Fournier-Viger, Philippe
  email: philippe.fournier-viger@umoncton.ca
  organization: Department of Computer Science, University of Moncton, Moncton, Canada
– sequence: 3
  givenname: Jerry Chun-Wei
  surname: Lin
  fullname: Lin, Jerry Chun-Wei
  email: jerrylin@ieee.org
  organization: School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
– sequence: 4
  givenname: Cheng-Wei
  surname: Wu
  fullname: Wu, Cheng-Wei
  email: silvemoonfox@gmail.com
  organization: Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 5
  givenname: Vincent S.
  surname: Tseng
  fullname: Tseng, Vincent S.
  email: vtseng@cs.nctu.edu.tw
  organization: Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
BookMark eNpNkM1OAjEUhauiEZE3cDEvUO3PbTt1hwSEBOJG1s3QaWF0mBmndcHbW9CFi5ubnJNzb853hwZN2ziEHih5pISoJ61yzDGnGjNFJMHaAFygcZJ5Es-avkRDKinFnIO--u8JzQdoSDhhWCvgN2ioOaOKgCS3aBzCByGEihxywofoZTZfrp-zSbaodvv6mM28r2zlmphN6l3bV3F_yHzbn228iVVdxWO2jO4QXMzWVVM1u3t07Ys6uPHfHqHNfPY-XeDV2-tyOlnhjgGPGGQBqrQgfQ6aEaukK6Vi3guai1yU1udWKMscuC0vLWNOCuWh4EVZQlFqPkLs927o-vTW9Wbbtp_BUGJO0EwiYLhJDMwZkDlBSyH4DXV9-_XtQjTulLKpYV_Udl900fXBCJFLBcIIIGkU_wGDM2sz
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-319-27060-9_44
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783319270609
3319270605
EISSN 1611-3349
Editor Galicia-Haro, Sofía N
Sidorov, Grigori
Editor_xml – sequence: 1
  fullname: Galicia-Haro, Sofía N
– sequence: 2
  fullname: Sidorov, Grigori
EndPage 546
ExternalDocumentID EBC5586745_540_547
GroupedDBID 0D6
0DA
38.
AABBV
AAGZE
AAZAK
AAZUS
ABBVZ
ABFTD
ABMNI
ACKNT
ACRRC
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IY-
LDH
SBO
SFQCF
TMQGW
TPJZQ
TSXQS
TWXRB
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-46a47dc46f84920c76ed672ff518585dcf8c57c2e4eb3dc22e657f4a3add4ad93
ISBN 9783319270593
3319270591
ISSN 0302-9743
IngestDate Wed Sep 17 03:58:40 EDT 2025
Fri Apr 04 22:03:06 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-46a47dc46f84920c76ed672ff518585dcf8c57c2e4eb3dc22e657f4a3add4ad93
Notes Original Abstract: High-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces several new ideas to more efficiently discovers high-utility itemsets both in terms of execution time and memory. EFIM relies on two upper-bounds named sub-tree utility and local utility to more effectively prune the search space. It also introduces a novel array-based utility counting technique named Fast Utility Counting to calculate these upper-bounds in linear time and space. Moreover, to reduce the cost of database scans, EFIM proposes efficient database projection and transaction merging techniques. An extensive experimental study on various datasets shows that EFIM is in general two to three orders of magnitude faster and consumes up to eight times less memory than the state-of-art algorithms d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}HUP, HUI-Miner, HUP-Miner, FHM and UP-Growth+.
OCLC 932170460
PQID EBC5586745_540_547
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_319_27060_9_44
proquest_ebookcentralchapters_5586745_540_547
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 14th Mexican International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, October 25-31, 2015, Proceedings, Part I
PublicationTitle Advances in Artificial Intelligence and Soft Computing
PublicationYear 2015
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zürich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madr, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Technical University of Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatic, Saarbrücken, Germany
SSID ssj0001584803
ssj0002792
Score 2.2119114
Snippet High-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient...
SourceID springer
proquest
SourceType Publisher
StartPage 530
SubjectTerms Artificial intelligence
Computer vision
Health & safety aspects of computing
High-utility mining
Itemset mining
Pattern mining
Title EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5586745&ppg=547
http://link.springer.com/10.1007/978-3-319-27060-9_44
Volume 9413
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYuQAHYIDY-CEfuFVGrX_EKbds6hgT5bSi3SzHsaHS1o02HMZfz3t20qZhl3GJojSK3Pc5zvN773sfIR8q7ktbjjOmheVMhtwza7liFhZD6asgtEZy8uxbdjqXZxfqYqviGNkldfnR_bmTV_I_qMI1wBVZsvdAdvNQuADngC8cAWE49pzf3TBrKi9O2ftYz1qsYslPapzR6bGZ6jJDPUziDe1nqpki05Mvs8RMx2qPy1uUWV5EguSwuPxxvVrUP69iGSL-zOb1IrrsGNxf-3o4i9IS3ajBWPWiBm3UsBd37IS-is87O00BryrXqP_XXTonMhFJ_1mHu6UXSJPi2KSHTUzq9bjb9lqllpu9ttfTo2Ol8kxLZcCpNHjTzS-GamGYVW-kU_bIHgxtQB4W07Ov37exNfCq8hFKeGyGPU7NlrZ_o0OjvGuYOxuOXo48uh7nz8gTpKNQ5InAwJ-TB365T562Yhy0WZv3yeNOZ8kX5Aix_UQLmpClG2TpBlkKyNIusrRBliZkX5L5yfT8-JQ1chnshktRM5lZqSsns5DLCR85nfkq0zwENcbkb-VC7pR23Etfispx7jOlg7QCPnHSVhPxigyW10v_mlDYgwflbRiNXZBlyW0mglSq4k5wrUJ1QFhrHROT-k0lsUu2WJsedAdk2JrQ4O1r03bLBtsbYcD2JtreoO0P7_n0N-TRdoq_JYN69du_A1exLt83M-MvOJZlOA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+and+Soft+Computing&rft.atitle=EFIM%3A+A+Highly+Efficient+Algorithm+for+High-Utility+Itemset+Mining&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319270593&rft.volume=9413&rft_id=info:doi/10.1007%2F978-3-319-27060-9_44&rft.externalDBID=547&rft.externalDocID=EBC5586745_540_547
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5586745-l.jpg