Automated Deep Learning for Threat Detection in Luggage from X-Ray Images

Luggage screening is a very important part of the airport security risk assessment and clearance process. Automating the threat objects detection from x-ray scans of passengers’ luggage can speed-up and increase the efficiency of the whole security procedure. In this paper we investigate and compare...

Full description

Saved in:
Bibliographic Details
Published inAnalysis of Experimental Algorithms Vol. 11544; pp. 505 - 512
Main Authors Petrozziello, Alessio, Jordanov, Ivan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030340285
3030340287
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-34029-2_32

Cover

Abstract Luggage screening is a very important part of the airport security risk assessment and clearance process. Automating the threat objects detection from x-ray scans of passengers’ luggage can speed-up and increase the efficiency of the whole security procedure. In this paper we investigate and compare several algorithms for detection of firearm parts in x-ray images of travellers’ baggage. In particular, we focus on identifying steel barrel bores as threat objects, being the main part of the weapon needed for deflagration. For this purpose, we use a dataset of 22k double view x-ray scans, containing a mixture of benign and threat objects. In the pre-processing stage we apply standard filtering techniques to remove noisy and ambiguous images (i.e., smoothing, black and white thresholding, edge detection, etc.) and subsequently employ deep learning techniques (Convolutional Neural Networks and Stacked Autoencoders) for the classification task. For comparison purposes we also train and simulate shallow Neural Networks and Random Forests algorithms for the objects detection. Furthermore, we validate our findings on a second dataset of double view x-ray scans of courier parcels. We report and critically discuss the results of the comparison on both datasets, showing the advantages of our approach.
AbstractList Luggage screening is a very important part of the airport security risk assessment and clearance process. Automating the threat objects detection from x-ray scans of passengers’ luggage can speed-up and increase the efficiency of the whole security procedure. In this paper we investigate and compare several algorithms for detection of firearm parts in x-ray images of travellers’ baggage. In particular, we focus on identifying steel barrel bores as threat objects, being the main part of the weapon needed for deflagration. For this purpose, we use a dataset of 22k double view x-ray scans, containing a mixture of benign and threat objects. In the pre-processing stage we apply standard filtering techniques to remove noisy and ambiguous images (i.e., smoothing, black and white thresholding, edge detection, etc.) and subsequently employ deep learning techniques (Convolutional Neural Networks and Stacked Autoencoders) for the classification task. For comparison purposes we also train and simulate shallow Neural Networks and Random Forests algorithms for the objects detection. Furthermore, we validate our findings on a second dataset of double view x-ray scans of courier parcels. We report and critically discuss the results of the comparison on both datasets, showing the advantages of our approach.
Author Petrozziello, Alessio
Jordanov, Ivan
Author_xml – sequence: 1
  givenname: Alessio
  surname: Petrozziello
  fullname: Petrozziello, Alessio
– sequence: 2
  givenname: Ivan
  surname: Jordanov
  fullname: Jordanov, Ivan
  email: ivan.jordanov@port.ac.uk
BookMark eNpVkM1OAjEUhauiEZA3cNEXqLa9nXa6JPhHMomJwcRdU4Z2QGE6dsrCt7eAG1f35pycm3O_ERq0oXUI3TJ6xyhV91qVBAgFSkBQrgk3wM_QJMuQxaPGz9GQScYIgNAX_7yyGKBh3jnRSsAVGjHGS0FLUchrNOn7T0op51JokEM0n-5T2NnkVvjBuQ5XzsZ20zbYh4gX6-hsykZyddqEFm9aXO2bxjYO-xh2-IO82R8832Whv0GX3m57N_mbY_T-9LiYvZDq9Xk-m1ak4wISEYwWILnW1C9XclmDUsozxwQwVUiZuzEFXvHaSi9A15pLL2uAQnkHpZUwRvx0t-9iLuqiWYbw1RtGzQGeySQMmPy_OYIyB3g5JE6hLobvveuTcYdU7doU7bZe2y652Jsih0smjBBgCibhF295bBs
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 5.0999999999999996
DOI 10.1007/978-3-030-34029-2_32
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030340292
3030340295
EISSN 1611-3349
Editor Pardalos, Panos
Kotsireas, Ilias
Tsokas, Arsenis
Souravlias, Dimitris
Parsopoulos, Konstantinos E
Editor_xml – sequence: 1
  fullname: Parsopoulos, Konstantinos E
– sequence: 2
  fullname: Tsokas, Arsenis
– sequence: 3
  fullname: Pardalos, Panos
– sequence: 4
  fullname: Kotsireas, Ilias
– sequence: 5
  fullname: Souravlias, Dimitris
EndPage 512
ExternalDocumentID EBC5978814_443_516
GroupedDBID 38.
AABBV
AAJYQ
AATVQ
ABBUY
ABCYT
ACDTA
ACDUY
AEDXK
AEHEY
AEJLV
AEKFX
AHNNE
AIFIR
ALMA_UNASSIGNED_HOLDINGS
ATJMZ
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-4105362990fbd6bc3777f1e14317566000173f72ca6f439c926f6c3357fe38a63
ISBN 9783030340285
3030340287
ISSN 0302-9743
IngestDate Tue Jul 29 20:11:04 EDT 2025
Tue Oct 21 01:19:25 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-4105362990fbd6bc3777f1e14317566000173f72ca6f439c926f6c3357fe38a63
OCLC 1128408456
PQID EBC5978814_443_516
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_030_34029_2_32
proquest_ebookcentralchapters_5978814_443_516
PublicationCentury 2000
PublicationDate 2019
20191114
PublicationDateYYYYMMDD 2019-01-01
2019-11-14
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Special Event, SEA² 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers
PublicationTitle Analysis of Experimental Algorithms
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002264936
ssj0002792
Score 2.03362
Snippet Luggage screening is a very important part of the airport security risk assessment and clearance process. Automating the threat objects detection from x-ray...
SourceID springer
proquest
SourceType Publisher
StartPage 505
SubjectTerms Baggage screening
Convolutional neural networks
Deep learning
Image filtering
Object detection algorithms
X-ray images
Title Automated Deep Learning for Threat Detection in Luggage from X-Ray Images
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5978814&ppg=516
http://link.springer.com/10.1007/978-3-030-34029-2_32
Volume 11544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZadyk69I2mL3DoZrAwxYekoYPRukgCN0PhFN4IUaacAIkU2HKA-tf3-LJkJ0u6CAZBiPR91PHu-N0RoS8LYbIyGWmicyoILypKsoxrYlKaaPic0srYE91fZ_L4nJ_OxbyjDrnsklZ_Lbf35pX8D6rQBrjaLNkHILt7KTTAb8AXnoAwPA-M3_0wayh93JUTmfTr9I-vlg24_BfX607vtatmu72MBy3jK0d-7dgzq0VRN7dOX9zG5RJG2bQNGLXG8pXNTSzH6smXswsXX_hhWlNGzuR0s1xaGpBLW5mT38Xf4ck1NPi5WKmY9bdpOLg4a1rHBxvGuyWiqunHImhuk_Lo3VjkQTSzC6jtOa-weY4YuK_-yp6YxAUKGlwcr_OM18nSVlpkvrJp0LNiJHpbtvBM7Du7QZ8AAm8mdrScJIrBnv0YJjBAT8aT0-mfXVDOZhXn9gL4sJXb6or-GMrPyiYHxVmnvnxT9y96iZn3DbnnwhycujtjZvYCPbMJLthmnoD8XqJHpn6FnkcIcIDgNTrZYY8t9jhijwF77LHHO-zxZY0D9thijx322GP_Bp3_nMy-H5Nw8wa5SThrieX-gmUDlkqlF1KXLE3TihrqrE0pXZUlVqVJWcgKLNoyT2QlS8YEfNosKyR7iwZ1U5t3CC-0MEwY2Bh1zivNNHSRFBQEH1UyK8QRIlEsyvEDAim59EJYK_B4s4xyxTlTgsojNIyyU7b7WsXC29BPMQVCV07oygr9_YN6f0BPu1X9EQ3a1cZ8Apuz1Z_DSvkH4XN4UQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Analysis+of+Experimental+Algorithms&rft.au=Petrozziello%2C+Alessio&rft.au=Jordanov%2C+Ivan&rft.atitle=Automated+Deep+Learning+for+Threat+Detection+in+Luggage+from+X-Ray+Images&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-11-14&rft.pub=Springer+International+Publishing&rft.isbn=9783030340285&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=505&rft.epage=512&rft_id=info:doi/10.1007%2F978-3-030-34029-2_32
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5978814-l.jpg