Cut Sparsifiers for Balanced Digraphs

In this paper we consider a cut sparsification problem for digraphs parametrized by balancedness. A weighted digraph $$D=(V,E)$$ is said to be $$\alpha $$ -balanced if the total weight of the edges from U to $$V\setminus U$$ is at most $$\alpha $$ times the total weight of the edges from $$V\setminu...

Full description

Saved in:
Bibliographic Details
Published inApproximation and Online Algorithms Vol. 11312; pp. 277 - 294
Main Authors Ikeda, Motoki, Tanigawa, Shin-ichi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030046927
3030046923
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-04693-4_17

Cover

More Information
Summary:In this paper we consider a cut sparsification problem for digraphs parametrized by balancedness. A weighted digraph $$D=(V,E)$$ is said to be $$\alpha $$ -balanced if the total weight of the edges from U to $$V\setminus U$$ is at most $$\alpha $$ times the total weight of the edges from $$V\setminus U$$ to U for any $$U\subseteq V$$ . Based on the combinatorial cut-sparsification framework by Fung et al. (2011), we show that for any $$\alpha $$ -balanced weighted digraph D with n vertices and m edges there is a weighted subdigraph $$D'$$ with $$O(\alpha \epsilon ^{-2} n\log n\log (nW))$$ edges that $$(1+\epsilon )$$ -cut-approximates D, where W is the maximum weight of an edge in D. We also show how to compute such a cut sparsifier in $$O(m\log \alpha +\alpha ^3 n\log W \mathrm{poly}(\log n))$$ time with high probability. Applying our sparsifier as a preprocessing, the running time of the minimum cut approximation algorithm by Ene et al. (2016) is improved to $$O(m\log \alpha +\alpha ^3 \epsilon ^{-4} n \mathrm{poly}(\log n))$$ for an $$\alpha $$ -balanced digraph with n vertices and m edges.
Bibliography:Original Abstract: In this paper we consider a cut sparsification problem for digraphs parametrized by balancedness. A weighted digraph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=(V,E)$$\end{document} is said to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-balanced if the total weight of the edges from U to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\setminus U$$\end{document} is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} times the total weight of the edges from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\setminus U$$\end{document} to U for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\subseteq V$$\end{document}. Based on the combinatorial cut-sparsification framework by Fung et al. (2011), we show that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-balanced weighted digraph D with n vertices and m edges there is a weighted subdigraph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D'$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha \epsilon ^{-2} n\log n\log (nW))$$\end{document} edges that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-cut-approximates D, where W is the maximum weight of an edge in D. We also show how to compute such a cut sparsifier in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\log \alpha +\alpha ^3 n\log W \mathrm{poly}(\log n))$$\end{document} time with high probability. Applying our sparsifier as a preprocessing, the running time of the minimum cut approximation algorithm by Ene et al. (2016) is improved to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\log \alpha +\alpha ^3 \epsilon ^{-4} n \mathrm{poly}(\log n))$$\end{document} for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-balanced digraph with n vertices and m edges.
This work is supported by JST CREST (JPMJCR1402).
ISBN:9783030046927
3030046923
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-04693-4_17