MACSQ: Massively Accelerated DeepQ Learning on GPUs Using On-the-fly State Construction

The current trend of using artificial neural networks to solve computationally intensive problems is omnipresent. In this scope, DeepQ learning is a common choice for agent-based problems. DeepQ combines the concept of Q-Learning with (deep) neural networks to learn different Q-values/matrices based...

Full description

Saved in:
Bibliographic Details
Published inParallel and Distributed Computing, Applications and Technologies Vol. 13148; pp. 383 - 395
Main Authors Köster, Marcel, Groß, Julian, Krüger, Antonio
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030967710
3030967719
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-96772-7_35

Cover

Abstract The current trend of using artificial neural networks to solve computationally intensive problems is omnipresent. In this scope, DeepQ learning is a common choice for agent-based problems. DeepQ combines the concept of Q-Learning with (deep) neural networks to learn different Q-values/matrices based on environmental conditions. Unfortunately, DeepQ learning requires hundreds of thousands of iterations/Q-samples that must be generated and learned for large-scale problems. Gathering data sets for such challenging tasks is extremely time consuming and requires large data-storage containers. Consequently, a common solution is the automatic generation of input samples for agent-based DeepQ networks. However, a usual workflow is to create the samples separately from the training process in either a (set of) pre-processing step(s) or interleaved with the training process. This requires the input Q-samples to be materialized in order to be fed into the training step of the attached neural network. In this paper, we propose a new GPU-focussed method for on-the-fly generation of training samples tightly coupled with the training process itself. This allows us to skip the materialization process of all samples (e.g. avoid dumping them disk), as they are (re)constructed when needed. Our method significantly outperforms usual workflows that generate the input samples on the CPU in terms of runtime performance and memory/storage consumption.
AbstractList The current trend of using artificial neural networks to solve computationally intensive problems is omnipresent. In this scope, DeepQ learning is a common choice for agent-based problems. DeepQ combines the concept of Q-Learning with (deep) neural networks to learn different Q-values/matrices based on environmental conditions. Unfortunately, DeepQ learning requires hundreds of thousands of iterations/Q-samples that must be generated and learned for large-scale problems. Gathering data sets for such challenging tasks is extremely time consuming and requires large data-storage containers. Consequently, a common solution is the automatic generation of input samples for agent-based DeepQ networks. However, a usual workflow is to create the samples separately from the training process in either a (set of) pre-processing step(s) or interleaved with the training process. This requires the input Q-samples to be materialized in order to be fed into the training step of the attached neural network. In this paper, we propose a new GPU-focussed method for on-the-fly generation of training samples tightly coupled with the training process itself. This allows us to skip the materialization process of all samples (e.g. avoid dumping them disk), as they are (re)constructed when needed. Our method significantly outperforms usual workflows that generate the input samples on the CPU in terms of runtime performance and memory/storage consumption.
Author Krüger, Antonio
Köster, Marcel
Groß, Julian
Author_xml – sequence: 1
  givenname: Marcel
  surname: Köster
  fullname: Köster, Marcel
  email: marcel.koester@dfki.de
– sequence: 2
  givenname: Julian
  surname: Groß
  fullname: Groß, Julian
– sequence: 3
  givenname: Antonio
  surname: Krüger
  fullname: Krüger, Antonio
BookMark eNpVkMFOGzEQht1CKxKaN-hhX8Aw9szau71FgdJKQSmCiKPldSYlEHm3a4PUt68DvXCy_fv_RqNvKo5jH1mIrwrOFIA9b20jUQKCbI21WlqH9QcxKzGW8DWzH8VEGaUkIrVH7_4UHItJuWvZWsLPYqoQalDUEJ2IWUqPAKCtNhpwIu6v54vbm2_VtU9p98L7v9U8BN7z6DNvqgvm4aZash_jLv6u-lhd_Vqnap0Or1WU-YHltjC3udSrRR9THp9D3vXxi_i09fvEs__nqVh_v7xb_JDL1dXPxXwpB02YpQ5Ue9C-MdQSd8Z2qLbUIaLdbGijLXPYGgrQeDIQaltD3VFTOoagUx2eCv02Nw1jWYpH1_X9U3IK3EGlK14cumLDvWpzB5UFojdoGPs_z5yy4wMVOObR78ODHzKPyZlWmwbQkS5Ua_AftUFx6g
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 004.35
DOI 10.1007/978-3-030-96772-7_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030967727
3030967727
EISSN 1611-3349
Editor Sang, Yingpeng
Fox, Geoffrey
Malek, Manu
Shen, Hong
Arabnia, Hamid R
Xiao, Nong
Gupta, Ajay
Zhang, Yong
Editor_xml – sequence: 1
  fullname: Sang, Yingpeng
– sequence: 2
  fullname: Arabnia, Hamid R
– sequence: 3
  fullname: Fox, Geoffrey
– sequence: 4
  fullname: Malek, Manu
– sequence: 5
  fullname: Shen, Hong
– sequence: 6
  fullname: Xiao, Nong
– sequence: 7
  fullname: Gupta, Ajay
– sequence: 8
  fullname: Zhang, Yong
EndPage 395
ExternalDocumentID EBC6926803_427_396
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
AJIEK
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-2c45a02a86494eb67b31f4b3337dd4d27eecf64c08a460c57505b481f4640b1b3
ISBN 9783030967710
3030967719
ISSN 0302-9743
IngestDate Wed Sep 17 04:25:01 EDT 2025
Tue Oct 21 01:50:30 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-2c45a02a86494eb67b31f4b3337dd4d27eecf64c08a460c57505b481f4640b1b3
Notes This work has been developed in the project APPaM (01IW20006), which is partly funded by the German ministry of education and research (BMBF).
OCLC 1305014844
PQID EBC6926803_427_396
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_030_96772_7_35
proquest_ebookcentralchapters_6926803_427_396
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 22nd International Conference, PDCAT 2021, Guangzhou, China, December 17-19, 2021, Proceedings
PublicationTitle Parallel and Distributed Computing, Applications and Technologies
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002726203
ssj0002792
Score 2.0302403
Snippet The current trend of using artificial neural networks to solve computationally intensive problems is omnipresent. In this scope, DeepQ learning is a common...
SourceID springer
proquest
SourceType Publisher
StartPage 383
SubjectTerms GPUs
Graphics processing units
Massively-parallel processing
Neural networks
Q-learning
State construction
Title MACSQ: Massively Accelerated DeepQ Learning on GPUs Using On-the-fly State Construction
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6926803&ppg=396
http://link.springer.com/10.1007/978-3-030-96772-7_35
Volume 13148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69I2mL3DoZqiQSJqSCnRw3DyQxGmDxm02gpSoLIUdxO7Q_rj-tt7xIclulnQRZJmWaN6H0_Ee3xHyTou85nnWJMZInQhdF4mx8JHZojJlUVe6xELh2Zk8movjy_HlYPCnl7X0c23eV79vrSv5H6nCNZArVsneQbLtTeECnIN84QgShuOW8bvpZvWkF_oG-6D4Uv9PyH-LravQYesaNYReJZNegNqNbH3pvezBEwyX78nYpGOG9Y9t5sXhzRK_Lg9iOXWHpxMXZ9-bXoWW2NiP2Od1RRTOJtOv5-h1mIGRDor1xy_sTwGvOmSowBxoe30eOV6vMHBx-GW-Gvk8hs-LBKzTpIHfOJPYNReNdLdeGyJL8-rjaYiDnC3XLr1sFFtVRM3Vd20wtuXaiK7NLedo55_b2AtzDBbJPA9ZsqEmDPQ97Ji8CrVexUskbuSeKDWobV7wngXAfdvPf14u_XwSuHOCT4PtieLjHbIDExiSe5P949NvrY-P5Uj331kGSNboo1p-VlhrFGddejao7l_06jxve-TGjmgriO9so4tH5AHWy1AsZIH1e0wGdvGEPIwioEEET8l3h4UPtEUC7SGBOiTQiAS6XFBEAnVIoB0SqEMC7SPhGZkf7F9Mj5LQ1iO5ZoKvE1aJsU6ZLqQohTUyNzxrhOGc53UtapZbWzVSVGmhhUwr2E-kYyMKGCNFajLDn5PhYrmwLwgtuWmMzLSutRVZLYzQtmjSpsg4hxO2S5K4SMolH4SM58ovyUrJkski5UowWNNS7pJRXEmFw1cqsnqDCBRXIALlRKBQBC_vNPoVud9h_DUZwirZN2DQrs3bgJu_ZDuXYA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Parallel+and+Distributed+Computing%2C+Applications+and+Technologies&rft.au=K%C3%B6ster%2C+Marcel&rft.au=Gro%C3%9F%2C+Julian&rft.au=Kr%C3%BCger%2C+Antonio&rft.atitle=MACSQ%3A+Massively+Accelerated+DeepQ+Learning+on+GPUs+Using+On-the-fly+State+Construction&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030967710&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=383&rft.epage=395&rft_id=info:doi/10.1007%2F978-3-030-96772-7_35
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6926803-l.jpg