Approximation Algorithms and an Integer Program for Multi-level Graph Spanners

Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-c...

Full description

Saved in:
Bibliographic Details
Published inAnalysis of Experimental Algorithms Vol. 11544; pp. 541 - 562
Main Authors Ahmed, Reyan, Hamm, Keaton, Latifi Jebelli, Mohammad Javad, Kobourov, Stephen, Sahneh, Faryad Darabi, Spence, Richard
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030340285
3030340287
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-34029-2_35

Cover

Abstract Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size $$O(|E||V|^2)$$ for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.
AbstractList Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size $$O(|E||V|^2)$$ for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.
Author Latifi Jebelli, Mohammad Javad
Sahneh, Faryad Darabi
Hamm, Keaton
Ahmed, Reyan
Kobourov, Stephen
Spence, Richard
Author_xml – sequence: 1
  givenname: Reyan
  surname: Ahmed
  fullname: Ahmed, Reyan
  email: abureyanahmed@email.arizona.edu
– sequence: 2
  givenname: Keaton
  surname: Hamm
  fullname: Hamm, Keaton
– sequence: 3
  givenname: Mohammad Javad
  surname: Latifi Jebelli
  fullname: Latifi Jebelli, Mohammad Javad
– sequence: 4
  givenname: Stephen
  surname: Kobourov
  fullname: Kobourov, Stephen
– sequence: 5
  givenname: Faryad Darabi
  surname: Sahneh
  fullname: Sahneh, Faryad Darabi
– sequence: 6
  givenname: Richard
  surname: Spence
  fullname: Spence, Richard
BookMark eNpVkMtOwzAQRQ0URFv6Byz8AwbbY8fOsqp4SeUhAWvLSZw2kNrBSRGfj9uyYTGa0R3d0dwzQSMfvEPoktErRqm6zpUmQChQAoLynHAD8gjNkgxJ3Gv8GI1ZxhgBEPnJv52WIzROMye5EnCGJoxxLagWMjtHs77_oJRynokcsjF6mnddDD_Nxg5N8HjerkJshvWmx9ZXqfCDH9zKRfwSwyraDa5DxI_bdmhI675di--i7db4tbPeu9hfoNPatr2b_fUper-9eVvck-Xz3cNiviQdFzAQLjOWgyyoLBXTuaoqyypa6jrLLZWitLrSTpYMMqgg44rSoi5cUdbK6VoJB1PED3f7LjY-_WeKED57w6jZETQJhwGTIJg9LbMjmEziYEqJv7auH4zbuUrnh2jbcm27IUUwMpk1E0YobqTk8AvVEXCY
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 5.0999999999999996
DOI 10.1007/978-3-030-34029-2_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030340292
3030340295
EISSN 1611-3349
Editor Pardalos, Panos
Kotsireas, Ilias
Tsokas, Arsenis
Souravlias, Dimitris
Parsopoulos, Konstantinos E
Editor_xml – sequence: 1
  fullname: Parsopoulos, Konstantinos E
– sequence: 2
  fullname: Tsokas, Arsenis
– sequence: 3
  fullname: Pardalos, Panos
– sequence: 4
  fullname: Kotsireas, Ilias
– sequence: 5
  fullname: Souravlias, Dimitris
EndPage 562
ExternalDocumentID EBC5978814_472_552
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-2561935b05c71897dda1d0c8f69a054ca8d8e5c1363d362700bfbebcf7e8f74e3
ISBN 9783030340285
3030340287
ISSN 0302-9743
IngestDate Tue Jul 29 20:11:05 EDT 2025
Thu May 29 01:07:20 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-2561935b05c71897dda1d0c8f69a054ca8d8e5c1363d362700bfbebcf7e8f74e3
Notes This work was supported in part by NSF grants CCF-1740858, CCF-1712119, and DMS-1839274.
Original Abstract: Given a weighted graph G(V, E) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|E||V|^2)$$\end{document} for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.
OCLC 1128408456
PQID EBC5978814_472_552
PageCount 22
ParticipantIDs springer_books_10_1007_978_3_030_34029_2_35
proquest_ebookcentralchapters_5978814_472_552
PublicationCentury 2000
PublicationDate 2019
20191114
PublicationDateYYYYMMDD 2019-01-01
2019-11-14
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Special Event, SEA² 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers
PublicationTitle Analysis of Experimental Algorithms
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002264936
ssj0002792
Score 1.9911659
Snippet Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a...
SourceID springer
proquest
SourceType Publisher
StartPage 541
SubjectTerms Graph spanners
Integer programming
Multi-level graph representation
Title Approximation Algorithms and an Integer Program for Multi-level Graph Spanners
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5978814&ppg=552
http://link.springer.com/10.1007/978-3-030-34029-2_35
Volume 11544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25YI48BblJR-4RUZOHCfOgcMKLVSrskLQot6sOHHYSu0GsWkF_CZ-JDO2s8lueymHjVaRlTgzn8Yz42_GhLxpuOuiJFkqOGdpBuGOSXjBKmGk4qnhmXEs30V2eJLOT-XpZPJ3xFq67Mzb6s-NdSX_o1W4B3rFKtlbaHbzULgB_0G_cAUNw3XH-d1Os4bWx0M7kdm4T__0_HsLIf_yYuMuT5cXPqf5xf4e0IBJa1-aA4H3wMwpkT0UzS3uSLit_k_tEkaWdTQvr8p6Y6FbzIe2VyOq2Bh-U-xV_uvMF0aOphSaw7pMJBYcf_b8MMd2dMXA7BxpTNFHbKQdfQVbtQocfSdSu353FHY9Fm3nyGRRfzBFb6fGiYy4wIq--HoicycVOmTjtiJfWHm5gNjXn_fTV4CBdYf4yBtM6w16hm0ahW-LGoy09K22wnov_WpwbSkZs0fgyQzfVrBEC7lH9vIcrOmd6Wx-9G2T0cOS5AJPjw9-ALZm9HtYflZYWdTPOve9n4avGFV13vTKrfhnZ8veeULHD8g9rI6hWLYC8ntIJnb1iNzvVUCDCh6TxRYA6AAACgCAHw0AoAEAFABARwCgDgC0B8ATcvJhdvz-kIWzO9iPJBUdA08aQgNpuKzA-ynyui7jmleqyYoSooSqVLWysopFJmrwoXLOTWOsqZrcqiZPrXhK9lftyj4jVMESLLMalibVgIC5so0QNm7yooJgQdQHhPWy0Y5hEGjNlZfEWkPMrFSc6jRPtJTJAYl6AWocvtZ9624Yp4UGyWsneY2Sf36r0S_I3QHaL8l-9_PSvgKvtTOvA1z-AWNDkD0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Analysis+of+Experimental+Algorithms&rft.au=Ahmed%2C+Reyan&rft.au=Hamm%2C+Keaton&rft.au=Latifi+Jebelli%2C+Mohammad+Javad&rft.au=Kobourov%2C+Stephen&rft.atitle=Approximation+Algorithms+and+an+Integer+Program+for+Multi-level+Graph+Spanners&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-11-14&rft.pub=Springer+International+Publishing&rft.isbn=9783030340285&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=541&rft.epage=562&rft_id=info:doi/10.1007%2F978-3-030-34029-2_35
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5978814-l.jpg