Approximation Algorithms and an Integer Program for Multi-level Graph Spanners
Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-c...
Saved in:
Published in | Analysis of Experimental Algorithms Vol. 11544; pp. 541 - 562 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030340285 3030340287 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-34029-2_35 |
Cover
Abstract | Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service.
We formulate a 0–1 integer linear program (ILP) of size $$O(|E||V|^2)$$ for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges. |
---|---|
AbstractList | Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service.
We formulate a 0–1 integer linear program (ILP) of size $$O(|E||V|^2)$$ for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges. |
Author | Latifi Jebelli, Mohammad Javad Sahneh, Faryad Darabi Hamm, Keaton Ahmed, Reyan Kobourov, Stephen Spence, Richard |
Author_xml | – sequence: 1 givenname: Reyan surname: Ahmed fullname: Ahmed, Reyan email: abureyanahmed@email.arizona.edu – sequence: 2 givenname: Keaton surname: Hamm fullname: Hamm, Keaton – sequence: 3 givenname: Mohammad Javad surname: Latifi Jebelli fullname: Latifi Jebelli, Mohammad Javad – sequence: 4 givenname: Stephen surname: Kobourov fullname: Kobourov, Stephen – sequence: 5 givenname: Faryad Darabi surname: Sahneh fullname: Sahneh, Faryad Darabi – sequence: 6 givenname: Richard surname: Spence fullname: Spence, Richard |
BookMark | eNpVkMtOwzAQRQ0URFv6Byz8AwbbY8fOsqp4SeUhAWvLSZw2kNrBSRGfj9uyYTGa0R3d0dwzQSMfvEPoktErRqm6zpUmQChQAoLynHAD8gjNkgxJ3Gv8GI1ZxhgBEPnJv52WIzROMye5EnCGJoxxLagWMjtHs77_oJRynokcsjF6mnddDD_Nxg5N8HjerkJshvWmx9ZXqfCDH9zKRfwSwyraDa5DxI_bdmhI675di--i7db4tbPeu9hfoNPatr2b_fUper-9eVvck-Xz3cNiviQdFzAQLjOWgyyoLBXTuaoqyypa6jrLLZWitLrSTpYMMqgg44rSoi5cUdbK6VoJB1PED3f7LjY-_WeKED57w6jZETQJhwGTIJg9LbMjmEziYEqJv7auH4zbuUrnh2jbcm27IUUwMpk1E0YobqTk8AvVEXCY |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 5.0999999999999996 |
DOI | 10.1007/978-3-030-34029-2_35 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030340292 3030340295 |
EISSN | 1611-3349 |
Editor | Pardalos, Panos Kotsireas, Ilias Tsokas, Arsenis Souravlias, Dimitris Parsopoulos, Konstantinos E |
Editor_xml | – sequence: 1 fullname: Parsopoulos, Konstantinos E – sequence: 2 fullname: Tsokas, Arsenis – sequence: 3 fullname: Pardalos, Panos – sequence: 4 fullname: Kotsireas, Ilias – sequence: 5 fullname: Souravlias, Dimitris |
EndPage | 562 |
ExternalDocumentID | EBC5978814_472_552 |
GroupedDBID | 38. AABBV AEDXK AEJLV AEKFX AIFIR ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z81 Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-p243t-2561935b05c71897dda1d0c8f69a054ca8d8e5c1363d362700bfbebcf7e8f74e3 |
ISBN | 9783030340285 3030340287 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:11:05 EDT 2025 Thu May 29 01:07:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.A43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p243t-2561935b05c71897dda1d0c8f69a054ca8d8e5c1363d362700bfbebcf7e8f74e3 |
Notes | This work was supported in part by NSF grants CCF-1740858, CCF-1712119, and DMS-1839274. Original Abstract: Given a weighted graph G(V, E) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document}, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|E||V|^2)$$\end{document} for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges. |
OCLC | 1128408456 |
PQID | EBC5978814_472_552 |
PageCount | 22 |
ParticipantIDs | springer_books_10_1007_978_3_030_34029_2_35 proquest_ebookcentralchapters_5978814_472_552 |
PublicationCentury | 2000 |
PublicationDate | 2019 20191114 |
PublicationDateYYYYMMDD | 2019-01-01 2019-11-14 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | Special Event, SEA² 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers |
PublicationTitle | Analysis of Experimental Algorithms |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002264936 ssj0002792 |
Score | 1.9911659 |
Snippet | Given a weighted graph G(V, E) and $$t \ge 1$$ , a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 541 |
SubjectTerms | Graph spanners Integer programming Multi-level graph representation |
Title | Approximation Algorithms and an Integer Program for Multi-level Graph Spanners |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5978814&ppg=552 http://link.springer.com/10.1007/978-3-030-34029-2_35 |
Volume | 11544 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25YI48BblJR-4RUZOHCfOgcMKLVSrskLQot6sOHHYSu0GsWkF_CZ-JDO2s8lueymHjVaRlTgzn8Yz42_GhLxpuOuiJFkqOGdpBuGOSXjBKmGk4qnhmXEs30V2eJLOT-XpZPJ3xFq67Mzb6s-NdSX_o1W4B3rFKtlbaHbzULgB_0G_cAUNw3XH-d1Os4bWx0M7kdm4T__0_HsLIf_yYuMuT5cXPqf5xf4e0IBJa1-aA4H3wMwpkT0UzS3uSLit_k_tEkaWdTQvr8p6Y6FbzIe2VyOq2Bh-U-xV_uvMF0aOphSaw7pMJBYcf_b8MMd2dMXA7BxpTNFHbKQdfQVbtQocfSdSu353FHY9Fm3nyGRRfzBFb6fGiYy4wIq--HoicycVOmTjtiJfWHm5gNjXn_fTV4CBdYf4yBtM6w16hm0ahW-LGoy09K22wnov_WpwbSkZs0fgyQzfVrBEC7lH9vIcrOmd6Wx-9G2T0cOS5AJPjw9-ALZm9HtYflZYWdTPOve9n4avGFV13vTKrfhnZ8veeULHD8g9rI6hWLYC8ntIJnb1iNzvVUCDCh6TxRYA6AAACgCAHw0AoAEAFABARwCgDgC0B8ATcvJhdvz-kIWzO9iPJBUdA08aQgNpuKzA-ynyui7jmleqyYoSooSqVLWysopFJmrwoXLOTWOsqZrcqiZPrXhK9lftyj4jVMESLLMalibVgIC5so0QNm7yooJgQdQHhPWy0Y5hEGjNlZfEWkPMrFSc6jRPtJTJAYl6AWocvtZ9624Yp4UGyWsneY2Sf36r0S_I3QHaL8l-9_PSvgKvtTOvA1z-AWNDkD0 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Analysis+of+Experimental+Algorithms&rft.au=Ahmed%2C+Reyan&rft.au=Hamm%2C+Keaton&rft.au=Latifi+Jebelli%2C+Mohammad+Javad&rft.au=Kobourov%2C+Stephen&rft.atitle=Approximation+Algorithms+and+an+Integer+Program+for+Multi-level+Graph+Spanners&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-11-14&rft.pub=Springer+International+Publishing&rft.isbn=9783030340285&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=541&rft.epage=562&rft_id=info:doi/10.1007%2F978-3-030-34029-2_35 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5978814-l.jpg |