Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays

Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply natively to relational and linear datasets, with distinct separation of the columns or attributes, but do not perform well on multidimensiona...

Full description

Saved in:
Bibliographic Details
Published inDatabase Systems for Advanced Applications Vol. 13245; pp. 509 - 525
Main Authors Krčál, Luboš, Ho, Shen-Shyang, Holub, Jan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783031001222
3031001222
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-00123-9_40

Cover

Abstract Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply natively to relational and linear datasets, with distinct separation of the columns or attributes, but do not perform well on multidimensional array scientific data. We propose a new method for multidimensional array indexing that considers the spatial component of multidimensional arrays. The hierarchical indexing method is based on sparse n-dimensional trees for dimension partitioning, and bitmap indexing with adaptive binning for attribute partitioning. This indexing performs well on range queries involving both dimension and attribute constraints, as it prunes the search space early. Moreover, the indexing is easily extensible to membership queries. The indexing method was implemented on top of a state of the art bitmap indexing library Fastbit, using tables partitioned along any subset of the data dimensions. We show that the hierarchical bitmap index outperforms conventional bitmap indexing, where an auxiliary attribute is required for each dimension. Furthermore, the adaptive binning significantly reduces the amount of bins and therefore memory requirements.
AbstractList Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply natively to relational and linear datasets, with distinct separation of the columns or attributes, but do not perform well on multidimensional array scientific data. We propose a new method for multidimensional array indexing that considers the spatial component of multidimensional arrays. The hierarchical indexing method is based on sparse n-dimensional trees for dimension partitioning, and bitmap indexing with adaptive binning for attribute partitioning. This indexing performs well on range queries involving both dimension and attribute constraints, as it prunes the search space early. Moreover, the indexing is easily extensible to membership queries. The indexing method was implemented on top of a state of the art bitmap indexing library Fastbit, using tables partitioned along any subset of the data dimensions. We show that the hierarchical bitmap index outperforms conventional bitmap indexing, where an auxiliary attribute is required for each dimension. Furthermore, the adaptive binning significantly reduces the amount of bins and therefore memory requirements.
Author Krčál, Luboš
Ho, Shen-Shyang
Holub, Jan
Author_xml – sequence: 1
  givenname: Luboš
  orcidid: 0000-0002-4824-8537
  surname: Krčál
  fullname: Krčál, Luboš
  email: lubos.krcal@fit.cvut.cz
– sequence: 2
  givenname: Shen-Shyang
  orcidid: 0000-0002-0353-7159
  surname: Ho
  fullname: Ho, Shen-Shyang
– sequence: 3
  givenname: Jan
  orcidid: 0000-0003-3022-2694
  surname: Holub
  fullname: Holub, Jan
BookMark eNpVkM1OAjEUhauiEZA3cDEvUO3t7Q9dolEh0RiNrpsy7cAodMZ2SPTtHdSNq5ucm-_k5BuRQWxiIOQc2AUwpi-NnlKkDIEyBhypsYIdkEkfYx_-ZOaQDEEBUERhjv79OB-QIUPGqdECT8gIEFAJ0IinZJLzG2OMaw4g1ZAs5nVILpXrunSb4qrutq4tFtGHzzquiqpJxbOLq1A87UKqQy6aWDzsNl3t622IuW5iT81Scl_5jBxXbpPD5O-Oyevtzcv1nN4_3i2uZ_e05QI7ClpLYKX2ZloZzxUqUMIJw0I1DV5CKb3xUC0rrXWQ3Jil1h6V1MKrfjXimPDf3tymfmNIdtk079kCs3t5tjdh0fYu7I8ou5fXQ-IXalPzsQu5s2FPlSF2yW3KtWu7kLJVRqHQ0kptrESJ35mtbaA
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.312
DOI 10.1007/978-3-031-00123-9_40
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783031001239
3031001230
EISSN 1611-3349
Editor Lee Mong Li, Janice
Bhattacharya, Arnab
Agrawal, Divyakant
Goyal, Vikram
Reddy, P. Krishna
Uday Kiran, Rage
Mohania, Mukesh
Mondal, Anirban
Editor_xml – sequence: 1
  fullname: Lee Mong Li, Janice
– sequence: 2
  fullname: Bhattacharya, Arnab
– sequence: 3
  fullname: Agrawal, Divyakant
– sequence: 4
  fullname: Goyal, Vikram
– sequence: 5
  fullname: Reddy, P. Krishna
– sequence: 6
  fullname: Uday Kiran, Rage
– sequence: 7
  fullname: Mohania, Mukesh
– sequence: 8
  fullname: Mondal, Anirban
EndPage 525
ExternalDocumentID EBC6963475_579_535
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
AJIEK
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p243t-177510c7d98f9d2636164a490ef8ed51c5d9d1fbf777e5299b77d36574d627233
ISBN 9783031001222
3031001222
ISSN 0302-9743
IngestDate Wed Sep 17 04:08:25 EDT 2025
Tue Oct 21 01:49:31 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-177510c7d98f9d2636164a490ef8ed51c5d9d1fbf777e5299b77d36574d627233
OCLC 1313641733
ORCID 0000-0002-4824-8537
0000-0003-3022-2694
0000-0002-0353-7159
PQID EBC6963475_579_535
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_031_00123_9_40
proquest_ebookcentralchapters_6963475_579_535
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 27th International Conference, DASFAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part I
PublicationTitle Database Systems for Advanced Applications
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002721156
ssj0002792
Score 2.0151153
Snippet Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply...
SourceID springer
proquest
SourceType Publisher
StartPage 509
Title Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6963475&ppg=535
http://link.springer.com/10.1007/978-3-031-00123-9_40
Volume 13245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBab7SX00DdNX-jQnhaVtSVZ1iGHbZqyDdtAm6TkJmxLJoHUG3ZtSPov-o87kiyv180lvRjbCFvMJ2ZGM_ONEHqf5mDHwDARIwEGZjgnecpiUgD6LCsFuPiWnPztOJmfsaNzfj4a_elVLTV1_rH4fSev5H9QhXeAq2XJ3gPZ7qPwAu4BX7gCwnAdOL_bYVZfy5LVmbVBoem4KxichZT-rJeY7pTqyrmOn11yPHKx30WTLz8ccHjs8HWx05MLU5GTi9usNWyevNDkvrC26i-0-aXlMLsjVa4mny7rX9k1aB1tbkKN5g_LX5h8b2xLZZeccKRfbY8V8C1BJrPVKrv101y7UfuLNrVxvKxdxdgknD4RlFE_WhHHg2hFiFYO4p2bkNvW9pbavqU299ePgFJQ4bAJ8lrReK2d2F6M1Pc-bTUxn8qeUeeeXf2PveiXiMDPiHMxiVRsuoN2YAJj9GB2eLT42YXtYrtjtu2HdsOzbBNVflaWPtTN2jd42jz3qJt3_XJrkzPIyzt35_QxemgpMNhyU0B-T9DIVE_RowABbiF4hr72scceexywx4A9dtjjFnu8rPAQe-yxf47OvhyeHsxJezYHuY4ZrUkkBGjzQmiZllLHCU1g350xOTVlajSPCq6ljsq8FEIYDj5PLoSmCRdMJyBDSl-gcbWszEuEM1GWkRR5oVPKUmNANKJM0kKYCPxTU-whEsSiXAVBW7ZceCGsVQJGhAmuuJCKU76HJkF2yg5fq9CaG76sqAKhKyd0ZYX-6l6jX6Pdzap-g8b1qjFvwSut83ftSvkLo1uA7w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Database+Systems+for+Advanced+Applications&rft.au=Kr%C4%8D%C3%A1l%2C+Lubo%C5%A1&rft.au=Ho%2C+Shen-Shyang&rft.au=Holub%2C+Jan&rft.atitle=Hierarchical+Bitmap+Indexing+for+Range+Queries+on+Multidimensional+Arrays&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031001222&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=509&rft.epage=525&rft_id=info:doi/10.1007%2F978-3-031-00123-9_40
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6963475-l.jpg