Solution to 0–1 Knapsack Problem Using Cohort Intelligence Algorithm
The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This...
Saved in:
| Published in | Cohort Intelligence: A Socio-inspired Optimization Method Vol. 114; pp. 55 - 74 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
01.01.2017
Springer International Publishing |
| Series | Intelligent Systems Reference Library |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319442538 9783319442532 |
| ISSN | 1868-4394 1868-4408 |
| DOI | 10.1007/978-3-319-44254-9_5 |
Cover
| Abstract | The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This chapter further tests the ability of CI by solving an NP-hard combinatorial problem such as Knapsack Problem (KP). Several cases of the 0–1 KP are solved. The effect of various parameters on the solution quality has been discussed. The advantages and limitations of the CI methodology are also discussed. |
|---|---|
| AbstractList | The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This chapter further tests the ability of CI by solving an NP-hard combinatorial problem such as Knapsack Problem (KP). Several cases of the 0–1 KP are solved. The effect of various parameters on the solution quality has been discussed. The advantages and limitations of the CI methodology are also discussed. |
| Author | Kulkarni, Anand Jayant Krishnasamy, Ganesh Abraham, Ajith |
| Author_xml | – sequence: 1 fullname: Krishnasamy, Ganesh – sequence: 2 fullname: Kulkarni, Anand Jayant – sequence: 3 fullname: Abraham, Ajith |
| BookMark | eNo1kEtOwzAQhg0URFt6Aja5QMCv-LGsKgoVlUCCrq04cdrQ1A62u-cO3JCT4LawGumb-WdG3wgMrLMGgFsE7xCE_F5ykZOcIJlTiguaS1WcgUmiJLEjkudgiAQTaQCKCzD6bxAx-G8QSa_AUBYSc4EYvAaTED4ghIgTXiAxBPM31-1j62wWXQZ_vr5R9mzLPpTVNnv1Tndml61Ca9fZzG2cj9nCRtN17drYymTTbu18Gze7G3DZlF0wk786Bqv5w_vsKV--PC5m02XeYwpjXjeSF0yk61BTI0jFK85K2DSGN4LVXGuMGG10Wda6ElJzqo1JRNQQSdlgMgbotDf0Pj1lvNLObYNCUB2kqaRHEZU8qKMhlaSlDD5leu8-9yZEZQ6hytjoy67alH00PijKJOUYKwIVo-QX9kRtDg |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2017 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2017 |
| DBID | FFUUA |
| DOI | 10.1007/978-3-319-44254-9_5 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783319442549 3319442546 |
| EISSN | 1868-4408 |
| EndPage | 74 |
| ExternalDocumentID | EBC4694722_30_64 |
| GroupedDBID | 0D9 0DA 20A 38. AABBV AALVI AAZIN ABMNI ABQUB ACBPT ACLYY ADCXD AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CEWPM CZZ DBMNP FFUUA I4C IEZ MYL SBO SWYDZ TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-p240t-df975681730b4e83c7c76a0ffe7f86d7bb2164fbaadbc89b74bee1648d0199f23 |
| ISBN | 3319442538 9783319442532 |
| ISSN | 1868-4394 |
| IngestDate | Tue Jul 29 19:59:22 EDT 2025 Tue Oct 21 05:00:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| LCCallNum | Q342 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p240t-df975681730b4e83c7c76a0ffe7f86d7bb2164fbaadbc89b74bee1648d0199f23 |
| OCLC | 959278160 |
| PQID | EBC4694722_30_64 |
| PageCount | 20 |
| ParticipantIDs | springer_books_10_1007_978_3_319_44254_9_5 proquest_ebookcentralchapters_4694722_30_64 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesTitle | Intelligent Systems Reference Library |
| PublicationSeriesTitleAlternate | Intel.Syst.Ref.Library |
| PublicationTitle | Cohort Intelligence: A Socio-inspired Optimization Method |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Jain, Lakhmi C. Kacprzyk, Janusz |
| RelatedPersons_xml | – sequence: 1 givenname: Janusz surname: Kacprzyk fullname: Kacprzyk, Janusz organization: Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland – sequence: 2 givenname: Lakhmi C. surname: Jain fullname: Jain, Lakhmi C. organization: University of South Australia, ACT, Australia |
| SSID | ssj0001737518 ssj0000603251 |
| Score | 1.9100758 |
| Snippet | The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 55 |
| SubjectTerms | Artificial intelligence Harmony Search Harmony Search Algorithm Knapsack Problem Nursing Personnel Problem Size |
| Title | Solution to 0–1 Knapsack Problem Using Cohort Intelligence Algorithm |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4694722&ppg=64&c=UERG http://link.springer.com/10.1007/978-3-319-44254-9_5 |
| Volume | 114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbScEEceItSQD5wYmW0yT59XKqUklK4NKg3y_batLTZhGZzKCf-Q_8hv4Txer2vcimXVWRtLO981ng8M98MQm8jTbmWsYBrajQloYwCQmmkiD_VuS8lFboqpnP8JT5chPPT6HQ0uulkLW1L8V7--iev5H9QhTHA1bBk74BsMykMwG_AF56AMDwHxm_fzWrrCqzOwHSueSC2pqZlLlccFPKpMDF0MCe_glJY1mxL77hqGN1oWdNevuAbvrR8FQ56r3EPH20vL4zbxKY9Gv_6nF_zNk0mEw3JOvtxXp51N59zthnL1nf5FMHEOyr4esPlheEnmD423qLOO7j1KV52-X11BdMuu36JSTLwSzi_5MCz2XGuZR97d9kAlEEIGiToK2dLMb2l6Lu5HYaHZf4ZEsqi9lxzsXxbJX1QVXv2YT-MqamUyQKfwSvrn8S0IjMh-7ovyw7agVWN0b1sNv_8rXXcJYEJVRmekFtxais5tV_QlLeyFYwHS-xdZgbx98qsOXmEHhiqCzYcFFj1YzRSxRP00DX6wLXef4oOHJ64XGH_z--bCXZI4hpJXCGJLZK4iyRukHyGFgezk_1DUjfgIGsw9EqSa5qYAnVwCohQpYFMZBJzX2uV6DTOEyGmcNvWgvNcyJSKJBRKwUiaw8WB6mnwHI2LVaFeIJzEYOjnka9UKkMuwcjMFZxtVMcKJtXxLvKcTFiVJlDnJksrgQ3robWL3jmxMfPyhrnq2yBuFjAQN6vEzUDcL-809R663-7mV2hcXm3Va7A7S_Gm3gl_AdOOgwA |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Cohort+Intelligence%3A+a+Socio-Inspired+Optimization+Method&rft.au=Krishnasamy%2C+Ganesh&rft.au=Kulkarni%2C+Anand+Jayant&rft.au=Abraham%2C+Ajith&rft.atitle=Solution+to+0%E2%80%931+Knapsack+Problem+Using+Cohort+Intelligence+Algorithm&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319442532&rft.volume=114&rft_id=info:doi/10.1007%2F978-3-319-44254-9_5&rft.externalDBID=64&rft.externalDocID=EBC4694722_30_64 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4694722-l.jpg |