Solution to 0–1 Knapsack Problem Using Cohort Intelligence Algorithm

The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This...

Full description

Saved in:
Bibliographic Details
Published inCohort Intelligence: A Socio-inspired Optimization Method Vol. 114; pp. 55 - 74
Main Authors Krishnasamy, Ganesh, Kulkarni, Anand Jayant, Abraham, Ajith
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2017
Springer International Publishing
SeriesIntelligent Systems Reference Library
Subjects
Online AccessGet full text
ISBN3319442538
9783319442532
ISSN1868-4394
1868-4408
DOI10.1007/978-3-319-44254-9_5

Cover

Abstract The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This chapter further tests the ability of CI by solving an NP-hard combinatorial problem such as Knapsack Problem (KP). Several cases of the 0–1 KP are solved. The effect of various parameters on the solution quality has been discussed. The advantages and limitations of the CI methodology are also discussed.
AbstractList The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In addition CI was also applied for solving several clustering problems. This validated the learning and self supervising behavior of the cohort. This chapter further tests the ability of CI by solving an NP-hard combinatorial problem such as Knapsack Problem (KP). Several cases of the 0–1 KP are solved. The effect of various parameters on the solution quality has been discussed. The advantages and limitations of the CI methodology are also discussed.
Author Kulkarni, Anand Jayant
Krishnasamy, Ganesh
Abraham, Ajith
Author_xml – sequence: 1
  fullname: Krishnasamy, Ganesh
– sequence: 2
  fullname: Kulkarni, Anand Jayant
– sequence: 3
  fullname: Abraham, Ajith
BookMark eNo1kEtOwzAQhg0URFt6Aja5QMCv-LGsKgoVlUCCrq04cdrQ1A62u-cO3JCT4LawGumb-WdG3wgMrLMGgFsE7xCE_F5ykZOcIJlTiguaS1WcgUmiJLEjkudgiAQTaQCKCzD6bxAx-G8QSa_AUBYSc4EYvAaTED4ghIgTXiAxBPM31-1j62wWXQZ_vr5R9mzLPpTVNnv1Tndml61Ca9fZzG2cj9nCRtN17drYymTTbu18Gze7G3DZlF0wk786Bqv5w_vsKV--PC5m02XeYwpjXjeSF0yk61BTI0jFK85K2DSGN4LVXGuMGG10Wda6ElJzqo1JRNQQSdlgMgbotDf0Pj1lvNLObYNCUB2kqaRHEZU8qKMhlaSlDD5leu8-9yZEZQ6hytjoy67alH00PijKJOUYKwIVo-QX9kRtDg
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2017
Copyright_xml – notice: Springer International Publishing Switzerland 2017
DBID FFUUA
DOI 10.1007/978-3-319-44254-9_5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319442549
3319442546
EISSN 1868-4408
EndPage 74
ExternalDocumentID EBC4694722_30_64
GroupedDBID 0D9
0DA
20A
38.
AABBV
AALVI
AAZIN
ABMNI
ABQUB
ACBPT
ACLYY
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CEWPM
CZZ
DBMNP
FFUUA
I4C
IEZ
MYL
SBO
SWYDZ
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-p240t-df975681730b4e83c7c76a0ffe7f86d7bb2164fbaadbc89b74bee1648d0199f23
ISBN 3319442538
9783319442532
ISSN 1868-4394
IngestDate Tue Jul 29 19:59:22 EDT 2025
Tue Oct 21 05:00:41 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCallNum Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-df975681730b4e83c7c76a0ffe7f86d7bb2164fbaadbc89b74bee1648d0199f23
OCLC 959278160
PQID EBC4694722_30_64
PageCount 20
ParticipantIDs springer_books_10_1007_978_3_319_44254_9_5
proquest_ebookcentralchapters_4694722_30_64
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Intelligent Systems Reference Library
PublicationSeriesTitleAlternate Intel.Syst.Ref.Library
PublicationTitle Cohort Intelligence: A Socio-inspired Optimization Method
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Jain, Lakhmi C.
Kacprzyk, Janusz
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
  organization: Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland
– sequence: 2
  givenname: Lakhmi C.
  surname: Jain
  fullname: Jain, Lakhmi C.
  organization: University of South Australia, ACT, Australia
SSID ssj0001737518
ssj0000603251
Score 1.9100758
Snippet The previous chapters discussed the algorithm Cohort Intelligence (CI) and its applicability solving several unconstrained and constrained problems. In...
SourceID springer
proquest
SourceType Publisher
StartPage 55
SubjectTerms Artificial intelligence
Harmony Search
Harmony Search Algorithm
Knapsack Problem
Nursing Personnel
Problem Size
Title Solution to 0–1 Knapsack Problem Using Cohort Intelligence Algorithm
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4694722&ppg=64&c=UERG
http://link.springer.com/10.1007/978-3-319-44254-9_5
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbScEEceItSQD5wYmW0yT59XKqUklK4NKg3y_batLTZhGZzKCf-Q_8hv4Txer2vcimXVWRtLO981ng8M98MQm8jTbmWsYBrajQloYwCQmmkiD_VuS8lFboqpnP8JT5chPPT6HQ0uulkLW1L8V7--iev5H9QhTHA1bBk74BsMykMwG_AF56AMDwHxm_fzWrrCqzOwHSueSC2pqZlLlccFPKpMDF0MCe_glJY1mxL77hqGN1oWdNevuAbvrR8FQ56r3EPH20vL4zbxKY9Gv_6nF_zNk0mEw3JOvtxXp51N59zthnL1nf5FMHEOyr4esPlheEnmD423qLOO7j1KV52-X11BdMuu36JSTLwSzi_5MCz2XGuZR97d9kAlEEIGiToK2dLMb2l6Lu5HYaHZf4ZEsqi9lxzsXxbJX1QVXv2YT-MqamUyQKfwSvrn8S0IjMh-7ovyw7agVWN0b1sNv_8rXXcJYEJVRmekFtxais5tV_QlLeyFYwHS-xdZgbx98qsOXmEHhiqCzYcFFj1YzRSxRP00DX6wLXef4oOHJ64XGH_z--bCXZI4hpJXCGJLZK4iyRukHyGFgezk_1DUjfgIGsw9EqSa5qYAnVwCohQpYFMZBJzX2uV6DTOEyGmcNvWgvNcyJSKJBRKwUiaw8WB6mnwHI2LVaFeIJzEYOjnka9UKkMuwcjMFZxtVMcKJtXxLvKcTFiVJlDnJksrgQ3robWL3jmxMfPyhrnq2yBuFjAQN6vEzUDcL-809R663-7mV2hcXm3Va7A7S_Gm3gl_AdOOgwA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Cohort+Intelligence%3A+a+Socio-Inspired+Optimization+Method&rft.au=Krishnasamy%2C+Ganesh&rft.au=Kulkarni%2C+Anand+Jayant&rft.au=Abraham%2C+Ajith&rft.atitle=Solution+to+0%E2%80%931+Knapsack+Problem+Using+Cohort+Intelligence+Algorithm&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319442532&rft.volume=114&rft_id=info:doi/10.1007%2F978-3-319-44254-9_5&rft.externalDBID=64&rft.externalDocID=EBC4694722_30_64
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4694722-l.jpg