Online Makespan Minimization with Budgeted Uncertainty

We study Online Makespan Minimization with uncertain job processing times. Jobs are assigned to m parallel and identical machines. Preemption is not allowed. Each job has a regular processing time while up to Γ $$\varGamma $$ jobs fail and require additional processing time. The goal is to minimize...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms and Data Structures Vol. 12808; pp. 43 - 56
Main Authors Albers, Susanne, Janke, Maximilian
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030835073
9783030835071
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-83508-8_4

Cover

Abstract We study Online Makespan Minimization with uncertain job processing times. Jobs are assigned to m parallel and identical machines. Preemption is not allowed. Each job has a regular processing time while up to Γ $$\varGamma $$ jobs fail and require additional processing time. The goal is to minimize the makespan, the time it takes to process all jobs if these Γ $$\varGamma $$ failing jobs are chosen worst possible. This models real-world applications where acts of nature beyond control have to be accounted for. So far Makespan Minimization With Budgeted Uncertainty has only been studied as an offline problem. We are first to provide a comprehensive analysis of the corresponding online problem. We provide a lower bound of 2 for general deterministic algorithms showing that the problem is more difficult than its special case, classical Online Makespan Minimization. We further analyze Graham’s Greedy strategy and show that it is precisely 3-2m $$\left( 3-\frac{2}{m}\right) $$ -competitive. This bound is tight. We finally provide a more sophisticated deterministic algorithm whose competitive ratio approaches 2.9052.
AbstractList We study Online Makespan Minimization with uncertain job processing times. Jobs are assigned to m parallel and identical machines. Preemption is not allowed. Each job has a regular processing time while up to Γ $$\varGamma $$ jobs fail and require additional processing time. The goal is to minimize the makespan, the time it takes to process all jobs if these Γ $$\varGamma $$ failing jobs are chosen worst possible. This models real-world applications where acts of nature beyond control have to be accounted for. So far Makespan Minimization With Budgeted Uncertainty has only been studied as an offline problem. We are first to provide a comprehensive analysis of the corresponding online problem. We provide a lower bound of 2 for general deterministic algorithms showing that the problem is more difficult than its special case, classical Online Makespan Minimization. We further analyze Graham’s Greedy strategy and show that it is precisely 3-2m $$\left( 3-\frac{2}{m}\right) $$ -competitive. This bound is tight. We finally provide a more sophisticated deterministic algorithm whose competitive ratio approaches 2.9052.
Author Albers, Susanne
Janke, Maximilian
Author_xml – sequence: 1
  givenname: Susanne
  surname: Albers
  fullname: Albers, Susanne
– sequence: 2
  givenname: Maximilian
  surname: Janke
  fullname: Janke, Maximilian
  email: maximilian@janke.tech
BookMark eNo1kMtOwzAQRQ0URFv6BWzyA4bx21kC4iW16oauLceZtKHFCYkRgq8nLbCa0bm6I82ZkFFsIhJyyeCKAZjr3FgqKAigViiw1Dp5RGYDFQM7IHtMxkwzRoWQ-QmZ_AdGjMh42DnNjRRnZMK45kpJqdg5mfX9KwBww3ImYEz0Mu7qiNnCb7FvfcwWdazf6m-f6iZmn3XaZLcf5RoTltkqBuySr2P6uiCnld_1OPubU7J6uH-5e6Lz5ePz3c2ctlxCor7SQXNvEKuCG-9ZYQMGbUvIhS8LEYKVMhRVxXTlkfsySMMgB_TKFKC0mBL2e7dvuzqusXNF02x7x8DtLbnBhxNueNYdlLjB0tDhv522a94_sE8O96WAMXV-Fza-Tdj1Tmtrc8WdBKes-AHQ0mgE
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 511.8
DOI 10.1007/978-3-030-83508-8_4
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783030835088
3030835081
EISSN 1611-3349
Editor He, Meng
Salavatipour, Mohammad
Lubiw, Anna
Editor_xml – sequence: 1
  fullname: He, Meng
– sequence: 2
  fullname: Salavatipour, Mohammad
– sequence: 3
  fullname: Lubiw, Anna
EndPage 56
ExternalDocumentID EBC6688952_40_58
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACBPT
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z7Z
Z81
Z83
Z84
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p240t-af6c62a7eefb27aa1b8cec68d093adb3cc844cbff16fae2adc471090ea57b0563
ISBN 3030835073
9783030835071
ISSN 0302-9743
IngestDate Tue Jul 29 20:28:48 EDT 2025
Wed Apr 16 06:35:34 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-af6c62a7eefb27aa1b8cec68d093adb3cc844cbff16fae2adc471090ea57b0563
Notes Work supported by the European Research Council, Grant Agreement No. 691672, project APEG.
Original Abstract: We study Online Makespan Minimization with uncertain job processing times. Jobs are assigned to m parallel and identical machines. Preemption is not allowed. Each job has a regular processing time while up to Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} jobs fail and require additional processing time. The goal is to minimize the makespan, the time it takes to process all jobs if these Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} failing jobs are chosen worst possible. This models real-world applications where acts of nature beyond control have to be accounted for. So far Makespan Minimization With Budgeted Uncertainty has only been studied as an offline problem. We are first to provide a comprehensive analysis of the corresponding online problem. We provide a lower bound of 2 for general deterministic algorithms showing that the problem is more difficult than its special case, classical Online Makespan Minimization. We further analyze Graham’s Greedy strategy and show that it is precisely 3-2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 3-\frac{2}{m}\right) $$\end{document}-competitive. This bound is tight. We finally provide a more sophisticated deterministic algorithm whose competitive ratio approaches 2.9052.
OCLC 1262554451
PQID EBC6688952_40_58
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_030_83508_8_4
proquest_ebookcentralchapters_6688952_40_58
PublicationCentury 2000
PublicationDate 2021
20210731
PublicationDateYYYYMMDD 2021-01-01
2021-07-31
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th International Symposium, WADS 2021, Virtual Event, August 9-11, 2021, Proceedings
PublicationTitle Algorithms and Data Structures
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002719130
ssj0002792
Score 2.0360885
Snippet We study Online Makespan Minimization with uncertain job processing times. Jobs are assigned to m parallel and identical machines. Preemption is not allowed....
SourceID springer
proquest
SourceType Publisher
StartPage 43
SubjectTerms Budgeted Uncertainty
Competitive analysis
Lower bound
Makespan Minimization
Online algorithm
Scheduling
Uncertainty
Title Online Makespan Minimization with Budgeted Uncertainty
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6688952&ppg=58
http://link.springer.com/10.1007/978-3-030-83508-8_4
Volume 12808
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdGd2EcYIVp5WPKYSeqTPlwHfcIpayq1p0o4mbZjs0QI4DaXvjreS-O2yTjwi5WFMWJ836O8_w-fo-Q75LnUQa_jZBRpjAlR4U8j2NsoMeAR7qMzZn9ZpM5nd4Mbja19crskqX6oV_ezCv5H1ThHOCKWbLvQHZ9UzgBx4AvtIAwtC3lt2lmdeHFf28fYWf_58GxLF_IpUQf86r0CSzqU8HRifZn8t7A-lH0Z3fF3UOVf-kMseer_Nag7jmHOVDGCDh2EG8PSOKWPcDbA1sWxZpR6-xnYw-ZImNNimphY1FMeMm38O8SW4-qgK4h9uUhF3TzR_FedEfK3uKzHp-PGON8OEgEjQRc8vQcYhEwdJZXFVG2yBaMq0M-no2nv67XJrMkg81lGmGGjh9z6jiUNu-wJpZy3MGtITa2ES3Pd6lQXO2RHUwyCTD7A0b9mXwwRZfs-hIbQbXidsmn2ZpWd7FPmEMy8EgGdSQDRDLwSAY1JA_I_HJ8NZqEVeGL8AkUrGUoLdMskZkxViWZlLHi2mgGn9UwlblKteaUamVtzKw0icw1xZDayMhBpkCjTb-QTvFYmK8kyCXoc0PKbGaR2S-WhseGxTm1Ult4To_0vURE6Z6vYoK1e_-FaGDVI6deaAIvXgjPeg3CFqkAYYtS2AKEffiuWx-R7c1sPiYd-F7MCeh7S_WtmgevU61Ubg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Algorithms+and+Data+Structures&rft.atitle=Online+Makespan+Minimization+with+Budgeted+Uncertainty&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030835071&rft.volume=12808&rft_id=info:doi/10.1007%2F978-3-030-83508-8_4&rft.externalDBID=58&rft.externalDocID=EBC6688952_40_58
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6688952-l.jpg