FPGA-Accelerated Tersoff Multi-body Potential for Molecular Dynamics Simulations

Molecular Dynamics simulation (MD) models the interactions of thousands to millions of particles through the iterative application of fundamental physics, and MD is one of the core methods in High-Performance Computing (HPC). However, the inherent weak scalability problem of force interactions rende...

Full description

Saved in:
Bibliographic Details
Published inApplied Reconfigurable Computing. Architectures, Tools, and Applications Vol. 13569; pp. 17 - 31
Main Authors Yuan, Ming, Liu, Qiang, Deng, Quan, Xiang, Shengye, Gan, Lin, Yang, Jinzhe, Duan, Xiaohui, Fu, Haohuan, Yang, Guangwen
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031199820
3031199820
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-19983-7_2

Cover

Abstract Molecular Dynamics simulation (MD) models the interactions of thousands to millions of particles through the iterative application of fundamental physics, and MD is one of the core methods in High-Performance Computing (HPC). However, the inherent weak scalability problem of force interactions renders MD simulation quite computationally intensive and challenging to scale. To this end, specialized FPGA-based accelerators have been proposed to solve this problem. In this work, we focus on many-body potentials on a single FPGA. Firstly, we proposed an efficient data transfer strategy to eliminate the latency between on-chip and off-chip memory. Then, the fixed-point description of data type is developed for computation to increase the utilization of on-chip resources. At last, a custom pipelined strategy is presented for Tersoff to get a better simulation performance. Compared with a floating-point implementation based on NVIDIA 28080ti GPUs, our design based on Xilinx U200 FPGA is 1.2 times better.
AbstractList Molecular Dynamics simulation (MD) models the interactions of thousands to millions of particles through the iterative application of fundamental physics, and MD is one of the core methods in High-Performance Computing (HPC). However, the inherent weak scalability problem of force interactions renders MD simulation quite computationally intensive and challenging to scale. To this end, specialized FPGA-based accelerators have been proposed to solve this problem. In this work, we focus on many-body potentials on a single FPGA. Firstly, we proposed an efficient data transfer strategy to eliminate the latency between on-chip and off-chip memory. Then, the fixed-point description of data type is developed for computation to increase the utilization of on-chip resources. At last, a custom pipelined strategy is presented for Tersoff to get a better simulation performance. Compared with a floating-point implementation based on NVIDIA 28080ti GPUs, our design based on Xilinx U200 FPGA is 1.2 times better.
Author Yang, Guangwen
Duan, Xiaohui
Yang, Jinzhe
Yuan, Ming
Gan, Lin
Liu, Qiang
Fu, Haohuan
Deng, Quan
Xiang, Shengye
Author_xml – sequence: 1
  givenname: Ming
  surname: Yuan
  fullname: Yuan, Ming
– sequence: 2
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
– sequence: 3
  givenname: Quan
  surname: Deng
  fullname: Deng, Quan
– sequence: 4
  givenname: Shengye
  surname: Xiang
  fullname: Xiang, Shengye
– sequence: 5
  givenname: Lin
  surname: Gan
  fullname: Gan, Lin
  email: lingan@tsinghua.edu.cn
– sequence: 6
  givenname: Jinzhe
  surname: Yang
  fullname: Yang, Jinzhe
– sequence: 7
  givenname: Xiaohui
  surname: Duan
  fullname: Duan, Xiaohui
– sequence: 8
  givenname: Haohuan
  surname: Fu
  fullname: Fu, Haohuan
– sequence: 9
  givenname: Guangwen
  surname: Yang
  fullname: Yang, Guangwen
BookMark eNpVkMFOwzAMhgMMxDb2BFz6AgEnTpvmOA02kDYxiXGO0jSFQteMpjvs7ckGFyRLtn7rt_x_IzJofesIuWVwxwDkvZI5RQrIKFMqRyo1PyOTqGLUTpI8J0OWMUYRhbr4t-MwIENA4FRJgVdkxDAFLmTG1TWZhPAJAFwipCIdkvV8vZjSqbWucZ3pXZlsXBd8VSWrfdPXtPDlIVn73rV9bZqk8l2y8o2z-8Z0ycOhNdvahuS13kahr30bbshlZZrgJn99TN7mj5vZE12-LJ5n0yXdcQE9VcyAkrJE4XiOoixKByJThcWYqsgrlWc2zqnLq1hojZMoOIc0A-S2Ejgm7Pdu2HV1--46XXj_FTQDfUSoIxCNOiLRJ146Iowe_uvZdf5770Kv3dFkY7jONPbD7PoYXkvGJeTRyHX87QfUR2_U
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 004
DOI 10.1007/978-3-031-19983-7_2
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783031199837
3031199839
EISSN 1611-3349
Editor Chau, Thomas
Gan, Lin
Xue, Wei
Wang, Yu
Editor_xml – sequence: 1
  fullname: Chau, Thomas
– sequence: 2
  fullname: Wang, Yu
– sequence: 3
  fullname: Gan, Lin
– sequence: 4
  fullname: Xue, Wei
EndPage 31
ExternalDocumentID EBC7127081_12_28
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p240t-91a0977d34e2834dbde0469bc3161b8f986cc315e8fe8f3cae73422056032cf43
ISBN 9783031199820
3031199820
ISSN 0302-9743
IngestDate Tue Jul 29 20:34:39 EDT 2025
Thu May 29 17:02:07 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK7885-7895
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-91a0977d34e2834dbde0469bc3161b8f986cc315e8fe8f3cae73422056032cf43
OCLC 1350247629
PQID EBC7127081_12_28
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_031_19983_7_2
proquest_ebookcentralchapters_7127081_12_28
PublicationCentury 2000
PublicationDate 2022
20221027
PublicationDateYYYYMMDD 2022-01-01
2022-10-27
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 18th International Symposium, ARC 2022, Virtual Event, September 19-20, 2022, Proceedings
PublicationTitle Applied Reconfigurable Computing. Architectures, Tools, and Applications
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002730545
ssj0002792
Score 2.0775251
Snippet Molecular Dynamics simulation (MD) models the interactions of thousands to millions of particles through the iterative application of fundamental physics, and...
SourceID springer
proquest
SourceType Publisher
StartPage 17
SubjectTerms Accelerator
FPGA
Molecular dynamics simulations
Pipeline
Title FPGA-Accelerated Tersoff Multi-body Potential for Molecular Dynamics Simulations
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7127081&ppg=28
http://link.springer.com/10.1007/978-3-031-19983-7_2
Volume 13569
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXocoEeKAVEoSAfOBEZJbY3yR7Tsm1VAVqJLerNih0HVYJN200P8OuZiZ1PuBQlirJRNrL8LPt5Zt4MIe8WBUyHItSs5EXIZJwblua6ZEnILYxpkwuLpoHPX-KzC3l-Ob_sC1026pJafzC__6kr-R9U4RngiirZeyDbfRQewD3gC1dAGK4T8js2s7rwYs8fcQO5Ka--3902KihXpgHLIQTZwEngooGq6se2jdfMBq7r4cA5WZ1mLDMG1iNMI1EEayTlZRk0Wl2mq-JXsKpqjDJy4keYF3yJ3eCjq2-_Db5e_fR1wUZ2Bc4ndoXWrjjab8J6F6Eoj4ejCVTMXbmVv6bjYQQG_BWjWlLBEsX71af1uHuJ-Dj39fLoOEHXeBqpiCt45fqGYcEwdKz76ik7ZAfaNSMPs-X5p2-deQ1YGZDROap5uja7fEv97y4JlcszPGniaMsx8ZI35GO9R3ZRkEJRKQKtfkoe2M0-edKW46B-dt4njwe5JZ-R1RRH6nGkPY60w5ECjrTDkbY40gGOz8nFyXJ9fMZ8-Qx2DTSthmUsD4HdF0Ja4JCy0IVFY4g2Ali-TstFGhu4n9u0hFOY3CZCou46DgU3pRQvyGxTbexLQiNtZSxDkaD1S3NMya1LzqMizuGQiwMStH2lGie_jyw2rme2aoTiAXnfdqfCl7eqzZ0NMCihAAbVwKAAhlf3-vRr8qgfy4dkVt_e2TfAGmv91o-QP6snaoo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Applied+Reconfigurable+Computing.+Architectures%2C+Tools%2C+and+Applications&rft.atitle=FPGA-Accelerated+Tersoff+Multi-body+Potential+for+Molecular+Dynamics+Simulations&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031199820&rft.volume=13569&rft_id=info:doi/10.1007%2F978-3-031-19983-7_2&rft.externalDBID=28&rft.externalDocID=EBC7127081_12_28
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7127081-l.jpg