Survey of Cloud Traffic Anomaly Detection Algorithms

Widespread use of cloud computing resources calls for reliable network connections, while anomalies in network traffic impact the availability of cloud resources in a negative way. Anomaly detection tools are essential for identifying and forecasting these network anomalies. In recent years machine...

Full description

Saved in:
Bibliographic Details
Published inInformation and Software Technologies Vol. 1665; pp. 19 - 32
Main Authors Paulikas, Giedrius, Sandonavičius, Donatas, Stasiukaitis, Edgaras, Vilutis, Gytis, Vaitkunas, Mindaugas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN9783031163012
303116301X
ISSN1865-0929
1865-0937
DOI10.1007/978-3-031-16302-9_2

Cover

Abstract Widespread use of cloud computing resources calls for reliable network connections, while anomalies in network traffic impact the availability of cloud resources in a negative way. Anomaly detection tools are essential for identifying and forecasting these network anomalies. In recent years machine learning methods are gaining popularity in implementations of anomaly detection tools. Given the variety of network anomaly types and the availability of diverse machine learning algorithms, developers of anomaly detection software and administrators of cloud infrastructures are presented with a wide range of possible solutions. This article presents a survey of the most popular machine learning methods that are applicable to detecting anomalies in cloud networks. In order to be able to classify and compare these methods, six major criteria (training approach, training time, preferred areas of application, discovery of unprecedented anomalies, dataset’s influence on anomaly prediction and problem of vanishing or exploding gradient) are discerned and discussed in detail, providing their implications on the evaluated methods. Subsequently, the criteria are used to review the features of the main machine learning methods for anomaly detection and to provide insights about using the methods to identify abnormal network behavior. The last part of the study lists the examined machine learning methods and appropriate tools for anomaly monitoring and detection. The provided lists are then used to draw final conclusions that provide the recommendations for employing the aforementioned algorithms and tools in various cases of anomaly detection.
AbstractList Widespread use of cloud computing resources calls for reliable network connections, while anomalies in network traffic impact the availability of cloud resources in a negative way. Anomaly detection tools are essential for identifying and forecasting these network anomalies. In recent years machine learning methods are gaining popularity in implementations of anomaly detection tools. Given the variety of network anomaly types and the availability of diverse machine learning algorithms, developers of anomaly detection software and administrators of cloud infrastructures are presented with a wide range of possible solutions. This article presents a survey of the most popular machine learning methods that are applicable to detecting anomalies in cloud networks. In order to be able to classify and compare these methods, six major criteria (training approach, training time, preferred areas of application, discovery of unprecedented anomalies, dataset’s influence on anomaly prediction and problem of vanishing or exploding gradient) are discerned and discussed in detail, providing their implications on the evaluated methods. Subsequently, the criteria are used to review the features of the main machine learning methods for anomaly detection and to provide insights about using the methods to identify abnormal network behavior. The last part of the study lists the examined machine learning methods and appropriate tools for anomaly monitoring and detection. The provided lists are then used to draw final conclusions that provide the recommendations for employing the aforementioned algorithms and tools in various cases of anomaly detection.
Author Stasiukaitis, Edgaras
Vaitkunas, Mindaugas
Sandonavičius, Donatas
Paulikas, Giedrius
Vilutis, Gytis
Author_xml – sequence: 1
  givenname: Giedrius
  surname: Paulikas
  fullname: Paulikas, Giedrius
– sequence: 2
  givenname: Donatas
  surname: Sandonavičius
  fullname: Sandonavičius, Donatas
– sequence: 3
  givenname: Edgaras
  surname: Stasiukaitis
  fullname: Stasiukaitis, Edgaras
– sequence: 4
  givenname: Gytis
  surname: Vilutis
  fullname: Vilutis, Gytis
  email: gytis.vilutis@ktu.lt
– sequence: 5
  givenname: Mindaugas
  surname: Vaitkunas
  fullname: Vaitkunas, Mindaugas
BookMark eNo9UFlOwzAQNVAQbekJ-MkFDF6S2PmsSlmkSnxQvi2vbSCNg50i9TachZPhtoA00mjmLZp5IzBofWsBuMboBiPEbivGIYWIYohLigisBDkBI5oWh5mfgiHmZQFRRdkZmCT6H4bJ4B8j1QUYYZpXVV7wkl2CSYxvCCHCSMWLcgiKl234tLvMu--vWeO3JlsG6Vyts2nrN7LZZXe2t7qvfZtNm5UPdb_exCtw7mQT7eS3j8Hr_Xw5e4SL54en2XQBO5KjHpaUWcuMo45wTZgl3BRKpzM5UVIZpEvG89woSTDHlGJXcGKVlkYZlmiGjgE--sYu1O3KBqG8f48CI7EPSaSvBRXJUBxCESmkpCFHTRf8x9bGXti9SNu2D7LRa9n1NkTBMEqVC5wcEP0BL4pnBQ
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 005.1
DOI 10.1007/978-3-031-16302-9_2
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3031163028
9783031163029
EISSN 1865-0937
Editor Lopata, Audrius
Butkienė, Rita
Gudonienė, Daina
Editor_xml – sequence: 1
  fullname: Lopata, Audrius
– sequence: 2
  fullname: Gudonienė, Daina
– sequence: 3
  fullname: Butkienė, Rita
EndPage 32
ExternalDocumentID EBC7107104_18_30
GroupedDBID 38.
9-X
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
SNUHX
TPJZQ
Z7R
Z7U
Z7X
Z81
Z83
Z84
Z88
ID FETCH-LOGICAL-p240t-637ee7df3f28c27e28d5bc03182babd0c67844dba2181331f582ebcadbd7c03d3
ISBN 9783031163012
303116301X
ISSN 1865-0929
IngestDate Tue Jul 29 20:24:32 EDT 2025
Tue Jul 22 07:50:54 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TK7885-7895
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-637ee7df3f28c27e28d5bc03182babd0c67844dba2181331f582ebcadbd7c03d3
OCLC 1349945867
PQID EBC7107104_18_30
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_031_16302_9_2
proquest_ebookcentralchapters_7107104_18_30
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle 28th International Conference, ICIST 2022, Kaunas, Lithuania, October 13-15, 2022, Proceedings
PublicationTitle Information and Software Technologies
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhou, Lizhu
Filipe, Joaquim
Ghosh, Ashish
Prates, Raquel Oliveira
RelatedPersons_xml – sequence: 1
  givenname: Joaquim
  orcidid: 0000-0002-5961-6606
  surname: Filipe
  fullname: Filipe, Joaquim
– sequence: 2
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
– sequence: 3
  givenname: Raquel Oliveira
  orcidid: 0000-0002-7128-4974
  surname: Prates
  fullname: Prates, Raquel Oliveira
– sequence: 4
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
SSID ssj0002729856
ssj0000580895
ssib054953581
Score 2.0150275
Snippet Widespread use of cloud computing resources calls for reliable network connections, while anomalies in network traffic impact the availability of cloud...
SourceID springer
proquest
SourceType Publisher
StartPage 19
SubjectTerms Machine learning algorithms
Network monitoring system
Traffic anomaly
Title Survey of Cloud Traffic Anomaly Detection Algorithms
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7107104&ppg=30&c=UERG
http://link.springer.com/10.1007/978-3-031-16302-9_2
Volume 1665
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgubQ98GirUh7KoVyKXCV-5HEMqwWEaE9QcbPi2G6Rlg1dQiv4NfwWfhnjxEk2gQuVIiuKnGgynzMZzxOhL9z4OdM0wgq-HcyYibDMfR8HecIj2ORqmtkE5-8_wuNzdnLBL7r2YFV2SSm_5fcv5pX8D6pwDXC1WbKvQLZ9KFyAc8AXRkAYxoHy2zezunDBNvHQxV-a8p-N42qt5W18YJP0Mf-rrUN9b0z2Un88LW6VLW5ui0jsp7PiKpvegfwpdd09PJ3-KuaX5e-rnmWAkIFloLEMDmyLC-at9Ki3m4S_WQDqmR_0xWNYN3N4JmsXwyvgTmxvJTgRpPu1NO5053rpF7aeHIxBvYGDiSAWMOX6D7bdwKzX3LVGWUbLQNYIraSTk9Ofre2MwI4g5qFN1WlIdsWUuldoK0zVRYQHJPb2EwMXeKVZnK2hdzbbxLNpIED1OlrSsw202vTa8Jzo3UBvFwpHvke8xtIrzONDhaPncPQcjl6Lo9fh-AGdH07OxsfYNcDA16BolTikkdaRMtSQOCeRJrHi8CWBGCYyk8rPQdNgTMnM6mmUBobHxAa3KakimKboRzSaFTP9CXkmzmWUGJJxrlmQqIxon5uEUxZKY1S4ifYbhojKTe9ig_P69W9ED6pN9LXhmbCTb0RT_Rp4LagAEkXFawG8_vyqR2-hN91a3kajcn6rd0DvK-WuWwZP7JJWXw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+and+Software+Technologies&rft.atitle=Survey+of%C2%A0Cloud+Traffic+Anomaly+Detection+Algorithms&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031163012&rft.volume=1665&rft_id=info:doi/10.1007%2F978-3-031-16302-9_2&rft.externalDBID=30&rft.externalDocID=EBC7107104_18_30
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7107104-l.jpg