Graph Intelligence Enhanced Bi-Channel Insider Threat Detection

For an organization, insider intrusion generally poses far more detrimental threats than outsider intrusion. Traditionally, insider threat is detected by analyzing logged user behaviours and then establishing a binary classifier to distinguish malicious ones. However, most approaches consider user b...

Full description

Saved in:
Bibliographic Details
Published inNetwork and System Security Vol. 13787; pp. 86 - 102
Main Authors Hong, Wei, Yin, Jiao, You, Mingshan, Wang, Hua, Cao, Jinli, Li, Jianxin, Liu, Ming
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031230196
3031230191
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-23020-2_5

Cover

Abstract For an organization, insider intrusion generally poses far more detrimental threats than outsider intrusion. Traditionally, insider threat is detected by analyzing logged user behaviours and then establishing a binary classifier to distinguish malicious ones. However, most approaches consider user behaviour in an isolated manner, inevitably missing the background information from organizational connections such as a shared supervisor or e-mail interactions. Consequently, the performance of those existing works still has the potential to be enhanced. In this paper, we propose a bi-channel insider threat detection (B-CITD) framework enhanced by graph intelligence to improve the overall performance of existing methods. Firstly, We extract behavioural features from a series of log files as the inner-user channel features. Secondly, we construct an organizational connection graph and extract topological features through a graph neural networks (GNN) model as the inter-user channel features. In the end, the features from inner-user and inter-user channels are combined together to perform an insider threat detection task through a binary classification model. Experimental results on an open-sourced CERT 4.2 dataset show that B-CITD can enhance the performance of insider threat detection by a large margin, compared with using features only from inner-user or inter-user channels. We published our code on GitHub: https://github.com/Wayne-on-the-road/B-CITD.
AbstractList For an organization, insider intrusion generally poses far more detrimental threats than outsider intrusion. Traditionally, insider threat is detected by analyzing logged user behaviours and then establishing a binary classifier to distinguish malicious ones. However, most approaches consider user behaviour in an isolated manner, inevitably missing the background information from organizational connections such as a shared supervisor or e-mail interactions. Consequently, the performance of those existing works still has the potential to be enhanced. In this paper, we propose a bi-channel insider threat detection (B-CITD) framework enhanced by graph intelligence to improve the overall performance of existing methods. Firstly, We extract behavioural features from a series of log files as the inner-user channel features. Secondly, we construct an organizational connection graph and extract topological features through a graph neural networks (GNN) model as the inter-user channel features. In the end, the features from inner-user and inter-user channels are combined together to perform an insider threat detection task through a binary classification model. Experimental results on an open-sourced CERT 4.2 dataset show that B-CITD can enhance the performance of insider threat detection by a large margin, compared with using features only from inner-user or inter-user channels. We published our code on GitHub: https://github.com/Wayne-on-the-road/B-CITD.
Author Yin, Jiao
Li, Jianxin
Liu, Ming
Hong, Wei
You, Mingshan
Wang, Hua
Cao, Jinli
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-2833-9228
  surname: Hong
  fullname: Hong, Wei
– sequence: 2
  givenname: Jiao
  orcidid: 0000-0002-0269-2624
  surname: Yin
  fullname: Yin, Jiao
  email: jiao.yin@vu.edu.au
– sequence: 3
  givenname: Mingshan
  orcidid: 0000-0003-0958-528X
  surname: You
  fullname: You, Mingshan
– sequence: 4
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
– sequence: 5
  givenname: Jinli
  orcidid: 0000-0002-0221-6361
  surname: Cao
  fullname: Cao, Jinli
– sequence: 6
  givenname: Jianxin
  orcidid: 0000-0002-9059-330X
  surname: Li
  fullname: Li, Jianxin
– sequence: 7
  givenname: Ming
  orcidid: 0000-0002-2160-6111
  surname: Liu
  fullname: Liu, Ming
BookMark eNotUEtOwzAUNFAQbekJ2OQCBtvPjuMVglJKpUpsytpyktcmEDnBDvfHbVnN-8yMRjMjE997JOSeswfOmH40uqBAGXAqgAlGhVUXZAbpcNrVJZnynHMKIM0VWST6_4-bfEKmLJGo0RJuyIyDyiUrRC5uySLGL8aYKAAYM1PytA5uaLKNH7Hr2gP6CrOVb1zCOntp6TKNHrtEiG2NIds1Ad2YveKI1dj2_o5c710XcfGPc_L5ttot3-n2Y71ZPm_pICQbaQoAvKyZcLpGl8IKpdSeo6phj1w4V-naqDwveIUKSgdVKZWRuay1LLhQMCf87BuH0PoDBlv2_Xe0nNljXTZZWrCpAXuqx6a6kkacNUPof34xjhaPogr9GFxXNW4YMUSruRJGalskFwN_1XRoOw
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 005.8
DOI 10.1007/978-3-031-23020-2_5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 3031230205
9783031230202
EISSN 1611-3349
Editor Alcaraz, Cristina
Majumdar, Suryadipta
Yuan, Xingliang
Bai, Guangdong
Editor_xml – sequence: 1
  fullname: Majumdar, Suryadipta
– sequence: 2
  fullname: Yuan, Xingliang
– sequence: 3
  fullname: Alcaraz, Cristina
– sequence: 4
  fullname: Bai, Guangdong
EndPage 102
ExternalDocumentID EBC7152947_87_99
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z88
ID FETCH-LOGICAL-p240t-56431bd02a7dea9782555f1e5d3fe12aac7d956681ce53ba3cb459464d7481253
ISBN 9783031230196
3031230191
ISSN 0302-9743
IngestDate Tue Jul 29 20:27:50 EDT 2025
Tue Jul 22 07:49:49 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA268
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p240t-56431bd02a7dea9782555f1e5d3fe12aac7d956681ce53ba3cb459464d7481253
OCLC 1356408262
ORCID 0000-0003-2833-9228
0000-0002-9059-330X
0000-0002-0269-2624
0000-0002-2160-6111
0000-0003-0958-528X
0000-0002-0221-6361
0000-0002-8465-0996
PQID EBC7152947_87_99
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_031_23020_2_5
proquest_ebookcentralchapters_7152947_87_99
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9-12, 2022, Proceedings
PublicationTitle Network and System Security
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002833009
ssj0002792
Score 2.155468
Snippet For an organization, insider intrusion generally poses far more detrimental threats than outsider intrusion. Traditionally, insider threat is detected by...
SourceID springer
proquest
SourceType Publisher
StartPage 86
SubjectTerms Graph neural networks
Insider threat
Supervised learning
Topological feature
Title Graph Intelligence Enhanced Bi-Channel Insider Threat Detection
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7152947&ppg=99&c=UERG
http://link.springer.com/10.1007/978-3-031-23020-2_5
Volume 13787
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbocgEOlAKi0CIfOLEKavxMDggVWFhVbS9saW-WnXi7e8lWJBVSfz3jVza76qVcoiiK7GTGHs-Mv_mM0Ie6pmZuyyrjlTAZK7XINC_yzDBZzh05ifY8s2fnYnrBTq741WDH1FWXdOZTdXdvXcn_aBWegV5dlewDNNs3Cg_gHvQLV9AwXLec3800ayRc8gDugL30fMwxed71WfJpxNte2mU_u-PpW0u9Gkz4AKBvrtvFerBcxkzy9FYPx9VPx3Adq08ik-ekWQQcwddl5qoVGuv4O_w5oOPZwucgvtvOY75C6044tv18Gvcvzledh4WN0xETyeIMUxKEbKUkUkrS4a1dK7_-Lru7ULu8Eb3C6gnrpiPoGRg9ChYaYpxg9GwwysJRLdJAbRoNbeLPvgkH55J7V4MhAAT6yqAzCJaJ4jtoB7ofocfHk5PT3_3K7cgU-wQd-F30KECE0je52qD0zXlgb1r_Q09pFViLt3rcCGC29ty9KzPbRc9ceQt2dScg6RfokW320PMkeRwlv4eenvWEvu1L9MWrHQ_VjpPa8VrtOKodB7XjXu2v0MWPyezbNItnb2Q34ON1GcxSmpv6iGhZWw0_BKEnn-eW13Ruc6J1JWsIrUWRV5ZTo2llGC-ZYLVk4DNy-hqNmlVj3yCcaymFYEIXDGL9nBjDq1qAF1QWJZEk30fjJBrlEQIRllwFQbRKgo9ZMqkKqcpyH31M0lPu5VYl4m34SEUVSF15qSuQ-tuHvPwOPVkP5gM06v7c2kPwODvzPg6Uf60vdPE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Network+and+System+Security&rft.au=Hong%2C+Wei&rft.au=Yin%2C+Jiao&rft.au=You%2C+Mingshan&rft.au=Wang%2C+Hua&rft.atitle=Graph+Intelligence+Enhanced+Bi-Channel+Insider+Threat+Detection&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031230196&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=86&rft.epage=102&rft_id=info:doi/10.1007%2F978-3-031-23020-2_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7152947-l.jpg