Activating Lattice Oxygen in Spinel ZnCo2O4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution
The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mec...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.06.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 |
DOI | 10.1002/anie.202301408 |
Cover
Abstract | The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst.
In this work, we successfully filled the lattice oxygen vacancies of ZnCo2O4 with F atom, achieving the activation of lattice oxygen by regulating metal‐oxygen hybridization, and the dominant oxygen evolution reaction mechanism on ZnCo2O4 can transform from adsorbate evolution mechanism to lattice oxygen oxidation mechanism. |
---|---|
AbstractList | The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst. The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst. In this work, we successfully filled the lattice oxygen vacancies of ZnCo2O4 with F atom, achieving the activation of lattice oxygen by regulating metal‐oxygen hybridization, and the dominant oxygen evolution reaction mechanism on ZnCo2O4 can transform from adsorbate evolution mechanism to lattice oxygen oxidation mechanism. |
Author | Hou, Liping Xiao, Kang Liu, Zhao‐Qing Wu, Peiyuan Wang, Yifan |
Author_xml | – sequence: 1 givenname: Kang surname: Xiao fullname: Xiao, Kang organization: Guangzhou University – sequence: 2 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: Guangzhou University – sequence: 3 givenname: Peiyuan surname: Wu fullname: Wu, Peiyuan organization: Guangzhou University – sequence: 4 givenname: Liping surname: Hou fullname: Hou, Liping organization: Guangzhou University – sequence: 5 givenname: Zhao‐Qing orcidid: 0000-0002-0727-7809 surname: Liu fullname: Liu, Zhao‐Qing email: lzqgzu@gzhu.edu.cn organization: Guangzhou University |
BookMark | eNo9kD1vwjAQhq2KSgXatbOlzqH-DM6IUGiRUBmKOnSJLOOAkWunjgPN1p_eRFCmu9M97530jMDAeacBeMRoghEiz9IZPSGIUIQZEjdgiDnBCZ1O6aDrGaXJVHB8B0Z1feh4IVA6BL8zFc1RRuN2cCVjNErD9U-70w4aB98r47SFn27uyZrBuA--2e3hwljbBy7gh1TSKaNreDKx29rGhy4HSx9gbrWKwSsZpW276_-Z_OhtE4139-C2lLbWD5c6BptFvpm_Jqv1y3I-WyUVoVQkWnKFMsUzjhDWQmdUUi24lopJIjPGeMoylXGNynTLuJAcS7JVSqTplpScjsHT-WwV_Hej61gcfBNc97EggvSmMsI6KjtTJ2N1W1TBfMnQFhgVveGiN1xcDRezt2V-negfmHJ1Ow |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | 7TM K9. |
DOI | 10.1002/anie.202301408 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202301408 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22278094 and 21805051 – fundername: Outstanding Youth Project of Guangdong Natural Science Foundation funderid: 2020B1515020028 – fundername: University Innovation Team Scientific Research Project of Guangzhou Education Bureau funderid: 202235246 – fundername: Science and Technology Research Project of Guangzhou funderid: 202102020376 and 202201020214 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. |
ID | FETCH-LOGICAL-p2338-ea5c09c595001e8e93a3e85eac4a2a9445649c95e0f6d458a51a2dcc866d2f53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 25 10:36:39 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2338-ea5c09c595001e8e93a3e85eac4a2a9445649c95e0f6d458a51a2dcc866d2f53 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0727-7809 |
PQID | 2821521924 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2821521924 wiley_primary_10_1002_anie_202301408_ANIE202301408 |
PublicationCentury | 2000 |
PublicationDate | June 12, 2023 |
PublicationDateYYYYMMDD | 2023-06-12 |
PublicationDate_xml | – month: 06 year: 2023 text: June 12, 2023 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 55 2019; 12 2019; 58 2021; 281 2020; 59 2014; 24 2020; 11 2017; 9 2014; 136 2020; 8 2018; 9 2018; 8 2020; 3 2018; 4 2001; 171 2022; 34 2021; 391 2020; 49 2019; 29 2016; 116 2021; 394 2022; 32 2021; 9 2022; 430 2011; 334 2019; 4 2021; 5 2021; 4 2015; 3 2019; 31 2020; 142 2017; 27 2019; 1 2020; 32 2007; 607 2021; 14 2021; 57 2016; 6 2017; 10 2018; 236 2017; 56 2022; 13 2022; 14 2013; 135 2022; 15 2020; 278 2021; 60 2016; 8 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 58 start-page: 11720 year: 2019 end-page: 11725 publication-title: Angew. Chem. Int. Ed. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 14646 year: 2014 end-page: 14649 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4066 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 8554 year: 2020 end-page: 8565 publication-title: J. Mater. Chem. A – volume: 56 start-page: 14977 year: 2017 end-page: 14981 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 13521 year: 2013 end-page: 13530 publication-title: J. Am. Chem. Soc. – volume: 281 year: 2021 publication-title: Appl. Catal. B – volume: 391 year: 2021 publication-title: Electrochim. Acta – volume: 9 start-page: 457 year: 2017 end-page: 465 publication-title: Nat. Chem. – volume: 10 start-page: 2190 year: 2017 end-page: 2200 publication-title: Energy Environ. Sci. – volume: 9 year: 2021 publication-title: Front. Energy Res. – volume: 3 start-page: 1442 year: 2020 end-page: 1476 publication-title: Matter – volume: 13 start-page: 179 year: 2022 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 607 start-page: 83 year: 2007 end-page: 89 publication-title: J. Electroanal. Chem. – volume: 10 start-page: 2563 year: 2017 end-page: 2569 publication-title: Energy Environ. Sci. – volume: 57 start-page: 428 year: 2021 end-page: 435 publication-title: J. Energy Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 3626 year: 2019 end-page: 3629 publication-title: Chem. Commun. – volume: 278 year: 2020 publication-title: Appl. Catal. B – volume: 58 start-page: 13291 year: 2019 end-page: 13296 publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 11540 year: 2020 end-page: 11549 publication-title: J. Am. Chem. Soc. – volume: 171 start-page: 217 year: 2001 end-page: 227 publication-title: J. Mol. Catal. A – volume: 3 start-page: 554 year: 2020 end-page: 563 publication-title: Nat. Catal. – volume: 4 start-page: 2902 year: 2018 end-page: 2916 publication-title: Chem – volume: 59 start-page: 6492 year: 2020 end-page: 6499 publication-title: Angew. Chem. Int. Ed. – volume: 116 start-page: 14120 year: 2016 end-page: 14136 publication-title: Chem. Rev. – volume: 236 start-page: 304 year: 2018 end-page: 313 publication-title: Appl. Catal. B – volume: 31 start-page: 8106 year: 2019 end-page: 8111 publication-title: Chem. Mater. – volume: 11 start-page: 39706 year: 2019 end-page: 39714 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 23307 year: 2022 end-page: 23321 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 9765 year: 2018 end-page: 9774 publication-title: ACS Catal. – volume: 11 start-page: 1984 year: 2020 publication-title: Nat. Commun. – volume: 334 start-page: 1386 year: 2011 end-page: 1385 publication-title: Science – volume: 12 start-page: 2620 year: 2019 end-page: 2645 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2164 year: 2021 end-page: 2176 publication-title: Joule – volume: 6 start-page: 1153 year: 2016 end-page: 1158 publication-title: ACS Catal. – volume: 8 start-page: 4628 year: 2018 end-page: 4636 publication-title: ACS Catal. – volume: 60 start-page: 14117 year: 2021 end-page: 14123 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 329 year: 2019 end-page: 338 publication-title: Nat. Energy – volume: 49 start-page: 2196 year: 2020 end-page: 2214 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 16896 year: 2015 end-page: 16912 publication-title: J. Mater. Chem. A – volume: 9 start-page: 25381 year: 2021 end-page: 25390 publication-title: J. Mater. Chem. A – volume: 57 start-page: 7168 year: 2021 end-page: 7171 publication-title: Chem. Commun. – volume: 4 start-page: 1012 year: 2021 end-page: 1023 publication-title: Nat. Catal. – volume: 15 start-page: 4592 year: 2022 end-page: 4600 publication-title: Energy Environ. Sci. – volume: 24 start-page: 5112 year: 2014 end-page: 5118 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 26740 year: 2016 end-page: 26757 publication-title: ACS Appl. Mater. Interfaces – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 394 start-page: 50 year: 2021 end-page: 57 publication-title: J. Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 14 start-page: 4647 year: 2021 end-page: 4671 publication-title: Energy Environ. Sci. – volume: 9 start-page: 947 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 2002 year: 2020 publication-title: Nat. Commun. – volume: 135 start-page: 17242 year: 2013 end-page: 17245 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1494 year: 2019 end-page: 1518 publication-title: Matter |
SSID | ssj0028806 |
Score | 2.7178867 |
Snippet | The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Absorbate Evolution Mechanism Anions Catalysts Electronegativity Electronic structure Evolution Fluorine Lattice Oxidation Mechanism Lattice vacancies Oxidation Oxygen Oxygen Evolution Oxygen evolution reactions Protonation Spinel Theoretical density ZnCo2O4 |
Title | Activating Lattice Oxygen in Spinel ZnCo2O4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202301408 https://www.proquest.com/docview/2821521924 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF1h4IwoFeWB1mzp2iMeqSlQQohIUVLFEjuOgCpRWNEWUiZ-Oz3nQMsKWSLk87Dv7O8f3fQhdAEdUot2UpEwpAorGJJZak66kUrgKULpl-7z1Bg_seszHK1X8BT9EveAGkWHHawhwGc87P6ShUIHdBvFvyBGg2rfrcvuf9q7mj6LGOYvyItcloEJfsTY6tLNuvoYvV1GqnWbCHSSrFyx2l7y0F3ncVp-_uBv_8wW7aLvEoLhXOM0e2tDZPtrsV9JvB-irpwrVs-wZ38gc9sfh4cfS-BqeZPh-Bk_GT1l_SocMl0o_OJxYeu_qwkeprPDvHMNSLw5fF7DVT2MDknFQaO_YpaOluXtlE7yXgXCIRmEw6g9IKdVAZtQkuURLrhyhuOBm2tO-Fq50tc_NqM6g0xmQ1ggluHZSL2Hcl9w4Q6KU73kJTbl7hBrZNNPHCF9ylrLYZ0powXxj7iuDcrigVPpO3E2aqFX1VFSG2zwyeSPgEJNLNhG1TR7NCrKOqKBlphE0dlQ3dtS7vQrqs5O_GJ2iLTgmVseohRr520KfGYCSx-fWCb8BmbjfUw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD3jx24ii9uC1fHQttkeCEFCERNEYL0vXdYZoBhEw4sk_3b5uQ_Goxy17-2jfa3-ve_39EDoDjqjQeBGJmNYEFI1JoIwhVUWV9DSgdMf22au179jlA8-qCWEvTMIPsVhwg8hw4zUEOCxIl79ZQ2ELdgnUvyFJEKtoDX7SQWxe3CwYpKh1z2SDkecR0KHPeBsrtLxsv4Qwf-JUN9G0NlGQvWJSX_Jcmk2Dkv74xd74r2_YQhspDMX1xG-20YqJd1C-kam_7aLPuk6Ez-In3FVTKJHD_fe5dTc8jPHtGB6NH-PGiPYZTsV-cGvoGL6zC--Vdtq_Ewyrvbj1MoNqP4MtTsbNRH7HrR7N7d0zm-ZbGgt7aNBqDhptkqo1kDG1eS4xiuuK1FxyO_MZYaSnPCO4HdgZ9DsD3hqpJTeVqBYyLhS3_hBqLWq1kEbc20e5eBSbA4TPOYtYIJiWRjJhzYW2QIdLSpWoBNWwgIpZV_lpxE18mzoCFLHpZAFR1-b-OOHr8BNmZupDY_uLxvbrvU5zcXT4F6NTlG8Prrt-t9O7OkLrcJ44WaMiyk1fZ-bY4pVpcOI88guc_eNv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSMCFHbHjA1d3cexgH6vSqCxqEZsqLpHjOKgChYqmCDjx6XicpFCOcEyUSWJ7xn4zst9D6Ag4omLjJSRhWhNQNCaRMoY0FFXS04DSHdtn1-_csrM-7_84xZ_zQ0wKbhAZbr6GAB_GSe2bNBROYFdB_BtyBDGL5phvUyyARVcTAilqvTM_X-R5BGToS9rGOq1N208BzJ8w1a0zwTJS5R_m20seq-MsquqPX-SN_2nCCloqQChu5l6zimZMuoYWWqX22zr6bOpc9ix9wBcqgw1yuPf2bp0ND1J8PYQv4_u09Ux7DBdSPzgYOH7v8sE7pZ3y7whDrRcHT2PY62ewRcm4nYvvuNrRu317adN-LSJhA90E7ZtWhxRaDWRIbZZLjOK6LjWX3K57RhjpKc8Ibqd1BqPOgLVGaslNPfFjxoXi1htirYXvxzTh3iaqpM-p2UL4mLOERYJpaSQT1lxoC3O4pFSJetSIt9FeOVJhEW-j0CaOAERsMrmNqOvycJizdYQ5LzMNobPDSWeHze5pe3K18xejQzR_eRKEF6fd8120CLeJ0zTaQ5XsZWz2LVjJogPnj18Kt-Ie |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Lattice+Oxygen+in+Spinel+ZnCo2O4+through+Filling+Oxygen+Vacancies+with+Fluorine+for+Electrocatalytic+Oxygen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiao%2C+Kang&rft.au=Wang%2C+Yifan&rft.au=Wu%2C+Peiyuan&rft.au=Hou%2C+Liping&rft.date=2023-06-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202301408&rft.externalDBID=10.1002%252Fanie.202301408&rft.externalDocID=ANIE202301408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |