Activating Lattice Oxygen in Spinel ZnCo2O4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution

The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mec...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 24
Main Authors Xiao, Kang, Wang, Yifan, Wu, Peiyuan, Hou, Liping, Liu, Zhao‐Qing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.06.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
DOI10.1002/anie.202301408

Cover

Abstract The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst. In this work, we successfully filled the lattice oxygen vacancies of ZnCo2O4 with F atom, achieving the activation of lattice oxygen by regulating metal‐oxygen hybridization, and the dominant oxygen evolution reaction mechanism on ZnCo2O4 can transform from adsorbate evolution mechanism to lattice oxygen oxidation mechanism.
AbstractList The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst.
The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst. In this work, we successfully filled the lattice oxygen vacancies of ZnCo2O4 with F atom, achieving the activation of lattice oxygen by regulating metal‐oxygen hybridization, and the dominant oxygen evolution reaction mechanism on ZnCo2O4 can transform from adsorbate evolution mechanism to lattice oxygen oxidation mechanism.
Author Hou, Liping
Xiao, Kang
Liu, Zhao‐Qing
Wu, Peiyuan
Wang, Yifan
Author_xml – sequence: 1
  givenname: Kang
  surname: Xiao
  fullname: Xiao, Kang
  organization: Guangzhou University
– sequence: 2
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
  organization: Guangzhou University
– sequence: 3
  givenname: Peiyuan
  surname: Wu
  fullname: Wu, Peiyuan
  organization: Guangzhou University
– sequence: 4
  givenname: Liping
  surname: Hou
  fullname: Hou, Liping
  organization: Guangzhou University
– sequence: 5
  givenname: Zhao‐Qing
  orcidid: 0000-0002-0727-7809
  surname: Liu
  fullname: Liu, Zhao‐Qing
  email: lzqgzu@gzhu.edu.cn
  organization: Guangzhou University
BookMark eNo9kD1vwjAQhq2KSgXatbOlzqH-DM6IUGiRUBmKOnSJLOOAkWunjgPN1p_eRFCmu9M97530jMDAeacBeMRoghEiz9IZPSGIUIQZEjdgiDnBCZ1O6aDrGaXJVHB8B0Z1feh4IVA6BL8zFc1RRuN2cCVjNErD9U-70w4aB98r47SFn27uyZrBuA--2e3hwljbBy7gh1TSKaNreDKx29rGhy4HSx9gbrWKwSsZpW276_-Z_OhtE4139-C2lLbWD5c6BptFvpm_Jqv1y3I-WyUVoVQkWnKFMsUzjhDWQmdUUi24lopJIjPGeMoylXGNynTLuJAcS7JVSqTplpScjsHT-WwV_Hej61gcfBNc97EggvSmMsI6KjtTJ2N1W1TBfMnQFhgVveGiN1xcDRezt2V-negfmHJ1Ow
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID 7TM
K9.
DOI 10.1002/anie.202301408
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202301408
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22278094 and 21805051
– fundername: Outstanding Youth Project of Guangdong Natural Science Foundation
  funderid: 2020B1515020028
– fundername: University Innovation Team Scientific Research Project of Guangzhou Education Bureau
  funderid: 202235246
– fundername: Science and Technology Research Project of Guangzhou
  funderid: 202102020376 and 202201020214
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
ID FETCH-LOGICAL-p2338-ea5c09c595001e8e93a3e85eac4a2a9445649c95e0f6d458a51a2dcc866d2f53
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Jul 25 10:36:39 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2338-ea5c09c595001e8e93a3e85eac4a2a9445649c95e0f6d458a51a2dcc866d2f53
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0727-7809
PQID 2821521924
PQPubID 946352
PageCount 10
ParticipantIDs proquest_journals_2821521924
wiley_primary_10_1002_anie_202301408_ANIE202301408
PublicationCentury 2000
PublicationDate June 12, 2023
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: June 12, 2023
  day: 12
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 55
2019; 12
2019; 58
2021; 281
2020; 59
2014; 24
2020; 11
2017; 9
2014; 136
2020; 8
2018; 9
2018; 8
2020; 3
2018; 4
2001; 171
2022; 34
2021; 391
2020; 49
2019; 29
2016; 116
2021; 394
2022; 32
2021; 9
2022; 430
2011; 334
2019; 4
2021; 5
2021; 4
2015; 3
2019; 31
2020; 142
2017; 27
2019; 1
2020; 32
2007; 607
2021; 14
2021; 57
2016; 6
2017; 10
2018; 236
2017; 56
2022; 13
2022; 14
2013; 135
2022; 15
2020; 278
2021; 60
2016; 8
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 11720
  year: 2019
  end-page: 11725
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 14646
  year: 2014
  end-page: 14649
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4066
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 8554
  year: 2020
  end-page: 8565
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 14977
  year: 2017
  end-page: 14981
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  publication-title: J. Am. Chem. Soc.
– volume: 281
  year: 2021
  publication-title: Appl. Catal. B
– volume: 391
  year: 2021
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 457
  year: 2017
  end-page: 465
  publication-title: Nat. Chem.
– volume: 10
  start-page: 2190
  year: 2017
  end-page: 2200
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2021
  publication-title: Front. Energy Res.
– volume: 3
  start-page: 1442
  year: 2020
  end-page: 1476
  publication-title: Matter
– volume: 13
  start-page: 179
  year: 2022
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  publication-title: J. Electroanal. Chem.
– volume: 10
  start-page: 2563
  year: 2017
  end-page: 2569
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 428
  year: 2021
  end-page: 435
  publication-title: J. Energy Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 3626
  year: 2019
  end-page: 3629
  publication-title: Chem. Commun.
– volume: 278
  year: 2020
  publication-title: Appl. Catal. B
– volume: 58
  start-page: 13291
  year: 2019
  end-page: 13296
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 11540
  year: 2020
  end-page: 11549
  publication-title: J. Am. Chem. Soc.
– volume: 171
  start-page: 217
  year: 2001
  end-page: 227
  publication-title: J. Mol. Catal. A
– volume: 3
  start-page: 554
  year: 2020
  end-page: 563
  publication-title: Nat. Catal.
– volume: 4
  start-page: 2902
  year: 2018
  end-page: 2916
  publication-title: Chem
– volume: 59
  start-page: 6492
  year: 2020
  end-page: 6499
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  publication-title: Chem. Rev.
– volume: 236
  start-page: 304
  year: 2018
  end-page: 313
  publication-title: Appl. Catal. B
– volume: 31
  start-page: 8106
  year: 2019
  end-page: 8111
  publication-title: Chem. Mater.
– volume: 11
  start-page: 39706
  year: 2019
  end-page: 39714
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 23307
  year: 2022
  end-page: 23321
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 9765
  year: 2018
  end-page: 9774
  publication-title: ACS Catal.
– volume: 11
  start-page: 1984
  year: 2020
  publication-title: Nat. Commun.
– volume: 334
  start-page: 1386
  year: 2011
  end-page: 1385
  publication-title: Science
– volume: 12
  start-page: 2620
  year: 2019
  end-page: 2645
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2164
  year: 2021
  end-page: 2176
  publication-title: Joule
– volume: 6
  start-page: 1153
  year: 2016
  end-page: 1158
  publication-title: ACS Catal.
– volume: 8
  start-page: 4628
  year: 2018
  end-page: 4636
  publication-title: ACS Catal.
– volume: 60
  start-page: 14117
  year: 2021
  end-page: 14123
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 329
  year: 2019
  end-page: 338
  publication-title: Nat. Energy
– volume: 49
  start-page: 2196
  year: 2020
  end-page: 2214
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 16896
  year: 2015
  end-page: 16912
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 25381
  year: 2021
  end-page: 25390
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 7168
  year: 2021
  end-page: 7171
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1012
  year: 2021
  end-page: 1023
  publication-title: Nat. Catal.
– volume: 15
  start-page: 4592
  year: 2022
  end-page: 4600
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 5112
  year: 2014
  end-page: 5118
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 26740
  year: 2016
  end-page: 26757
  publication-title: ACS Appl. Mater. Interfaces
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 394
  start-page: 50
  year: 2021
  end-page: 57
  publication-title: J. Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4647
  year: 2021
  end-page: 4671
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 947
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2002
  year: 2020
  publication-title: Nat. Commun.
– volume: 135
  start-page: 17242
  year: 2013
  end-page: 17245
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1494
  year: 2019
  end-page: 1518
  publication-title: Matter
SSID ssj0028806
Score 2.7178867
Snippet The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Absorbate Evolution Mechanism
Anions
Catalysts
Electronegativity
Electronic structure
Evolution
Fluorine
Lattice Oxidation Mechanism
Lattice vacancies
Oxidation
Oxygen
Oxygen Evolution
Oxygen evolution reactions
Protonation
Spinel
Theoretical density
ZnCo2O4
Title Activating Lattice Oxygen in Spinel ZnCo2O4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202301408
https://www.proquest.com/docview/2821521924
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF1h4IwoFeWB1mzp2iMeqSlQQohIUVLFEjuOgCpRWNEWUiZ-Oz3nQMsKWSLk87Dv7O8f3fQhdAEdUot2UpEwpAorGJJZak66kUrgKULpl-7z1Bg_seszHK1X8BT9EveAGkWHHawhwGc87P6ShUIHdBvFvyBGg2rfrcvuf9q7mj6LGOYvyItcloEJfsTY6tLNuvoYvV1GqnWbCHSSrFyx2l7y0F3ncVp-_uBv_8wW7aLvEoLhXOM0e2tDZPtrsV9JvB-irpwrVs-wZ38gc9sfh4cfS-BqeZPh-Bk_GT1l_SocMl0o_OJxYeu_qwkeprPDvHMNSLw5fF7DVT2MDknFQaO_YpaOluXtlE7yXgXCIRmEw6g9IKdVAZtQkuURLrhyhuOBm2tO-Fq50tc_NqM6g0xmQ1ggluHZSL2Hcl9w4Q6KU73kJTbl7hBrZNNPHCF9ylrLYZ0powXxj7iuDcrigVPpO3E2aqFX1VFSG2zwyeSPgEJNLNhG1TR7NCrKOqKBlphE0dlQ3dtS7vQrqs5O_GJ2iLTgmVseohRr520KfGYCSx-fWCb8BmbjfUw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UD3jx24ii9uC1fHQttkeCEFCERNEYL0vXdYZoBhEw4sk_3b5uQ_Goxy17-2jfa3-ve_39EDoDjqjQeBGJmNYEFI1JoIwhVUWV9DSgdMf22au179jlA8-qCWEvTMIPsVhwg8hw4zUEOCxIl79ZQ2ELdgnUvyFJEKtoDX7SQWxe3CwYpKh1z2SDkecR0KHPeBsrtLxsv4Qwf-JUN9G0NlGQvWJSX_Jcmk2Dkv74xd74r2_YQhspDMX1xG-20YqJd1C-kam_7aLPuk6Ez-In3FVTKJHD_fe5dTc8jPHtGB6NH-PGiPYZTsV-cGvoGL6zC--Vdtq_Ewyrvbj1MoNqP4MtTsbNRH7HrR7N7d0zm-ZbGgt7aNBqDhptkqo1kDG1eS4xiuuK1FxyO_MZYaSnPCO4HdgZ9DsD3hqpJTeVqBYyLhS3_hBqLWq1kEbc20e5eBSbA4TPOYtYIJiWRjJhzYW2QIdLSpWoBNWwgIpZV_lpxE18mzoCFLHpZAFR1-b-OOHr8BNmZupDY_uLxvbrvU5zcXT4F6NTlG8Prrt-t9O7OkLrcJ44WaMiyk1fZ-bY4pVpcOI88guc_eNv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSMCFHbHjA1d3cexgH6vSqCxqEZsqLpHjOKgChYqmCDjx6XicpFCOcEyUSWJ7xn4zst9D6Ag4omLjJSRhWhNQNCaRMoY0FFXS04DSHdtn1-_csrM-7_84xZ_zQ0wKbhAZbr6GAB_GSe2bNBROYFdB_BtyBDGL5phvUyyARVcTAilqvTM_X-R5BGToS9rGOq1N208BzJ8w1a0zwTJS5R_m20seq-MsquqPX-SN_2nCCloqQChu5l6zimZMuoYWWqX22zr6bOpc9ix9wBcqgw1yuPf2bp0ND1J8PYQv4_u09Ux7DBdSPzgYOH7v8sE7pZ3y7whDrRcHT2PY62ewRcm4nYvvuNrRu317adN-LSJhA90E7ZtWhxRaDWRIbZZLjOK6LjWX3K57RhjpKc8Ibqd1BqPOgLVGaslNPfFjxoXi1htirYXvxzTh3iaqpM-p2UL4mLOERYJpaSQT1lxoC3O4pFSJetSIt9FeOVJhEW-j0CaOAERsMrmNqOvycJizdYQ5LzMNobPDSWeHze5pe3K18xejQzR_eRKEF6fd8120CLeJ0zTaQ5XsZWz2LVjJogPnj18Kt-Ie
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Lattice+Oxygen+in+Spinel+ZnCo2O4+through+Filling+Oxygen+Vacancies+with+Fluorine+for+Electrocatalytic+Oxygen+Evolution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiao%2C+Kang&rft.au=Wang%2C+Yifan&rft.au=Wu%2C+Peiyuan&rft.au=Hou%2C+Liping&rft.date=2023-06-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202301408&rft.externalDBID=10.1002%252Fanie.202301408&rft.externalDocID=ANIE202301408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon