A Generalized MSST Algorithm for Counting Points of Elliptic Curves over Fpn
Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p -adic algorithms, such as SST algorithm, generalized AGM algorithm, Ke...
Saved in:
| Published in | Journal of systems science and complexity Vol. 37; no. 4; pp. 1738 - 1754 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1009-6124 1559-7067 |
| DOI | 10.1007/s11424-024-2452-5 |
Cover
| Abstract | Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many
p
-adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two
n
-bit numbers is denoted as
O
(
n
μ
), then the time complexity of the generalized MSST algorithm is
O
(
n
2
μ
+
1
1
+
μ
)
, which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm. |
|---|---|
| AbstractList | Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p-adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two n-bit numbers is denoted as O(nμ), then the time complexity of the generalized MSST algorithm is O(n2μ+11+μ), which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm. Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p -adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two n -bit numbers is denoted as O ( n μ ), then the time complexity of the generalized MSST algorithm is O ( n 2 μ + 1 1 + μ ) , which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm. |
| Author | Li, Xiao Pan, Zhizhong Lv, Chang |
| Author_xml | – sequence: 1 givenname: Xiao surname: Li fullname: Li, Xiao organization: Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences, School of Cyber Security, University of Chinese Academy of Sciences – sequence: 2 givenname: Chang surname: Lv fullname: Lv, Chang email: lvchang@iie.ac.cn organization: Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences – sequence: 3 givenname: Zhizhong surname: Pan fullname: Pan, Zhizhong organization: Huawei Technologies Co., Ltd |
| BookMark | eNpFkE9Lw0AQxRepYFv9AN4WPEdn_6fHEtoqVBRazyGbTGpK3I2bpAc_vVsqeBhmGB5v3vxmZOK8Q0LuGTwyAPPUMya5TCAWl4on6opMmVKLxIA2kzgDLBLNuLwhs74_Agi9gHRKtku6QYehaJsfrOjrbreny_bgQzN8ftHaB5r50Q2NO9B337ihp76mq7ZtuqEpaTaGE8bVCQNdd-6WXNdF2-PdX5-Tj_Vqnz0n27fNS7bcJh3nekhKYeuqYqIyprRYAiCkWhgEYVFiwWRlBLdc2hQKboQQaGWBQvEqrU1RWzEnDxffLvjvEfshP_oxuHgyF6B1qpWOD84Jv6j6LsT8GP5VDPIztfxCLY_U8jO1XIlfd-hhCA |
| Cites_doi | 10.1007/3-540-45455-1_24 10.1090/S0025-5718-1993-1199989-X 10.1109/TIT.1976.1055638 10.1090/amsip/007/03 10.1007/BF02234362 10.1109/TIT.1985.1057074 10.1090/S0025-5718-1987-0866109-5 10.4007/annals.2021.193.2.4 10.1201/9781420034981 10.5802/jtnb.142 10.1145/359340.359342 10.1016/S1071-5797(02)00013-8 |
| ContentType | Journal Article |
| Copyright | The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024 The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024. |
| Copyright_xml | – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024 – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024. |
| DOI | 10.1007/s11424-024-2452-5 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1559-7067 |
| EndPage | 1754 |
| ExternalDocumentID | 10_1007_s11424_024_2452_5 |
| GroupedDBID | -5D -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9R PF0 PT4 Q-- QOS R89 R9I REI ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z81 Z83 Z88 ZMTXR ~A9 ABAKF ABDBE ABFSG ABRTQ ACAOD ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA |
| ID | FETCH-LOGICAL-p226t-c3bfdd13d77cbec00e08637e03be4ea14d732b24b80a27333eb4ae352d8f7afb3 |
| IEDL.DBID | U2A |
| ISSN | 1009-6124 |
| IngestDate | Wed Sep 17 23:58:05 EDT 2025 Fri Feb 21 02:41:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | generalized AGM algorithm Elliptic curve generalized MSST algorithm SST algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p226t-c3bfdd13d77cbec00e08637e03be4ea14d732b24b80a27333eb4ae352d8f7afb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3066865600 |
| PQPubID | 2044418 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3066865600 springer_journals_10_1007_s11424_024_2452_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of systems science and complexity |
| PublicationTitleAbbrev | J Syst Sci Complex |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Atkin, Morain (CR8) 1993; 61 Satoh (CR12) 2000; 15 Kohel (CR16) 2003 ElGamal (CR3) 1985; 31 Harvey, Der Hoeven (CR20) 2021; 193 Cox (CR24) 1984 CR17 CR15 Karatsuba (CR18) 1963; 7 Velu (CR23) 1971; 273 Schönhage (CR19) 1966; 1 Rivest, Shamir, Adleman (CR2) 1978; 21 Kim, Park, Cheon, Fieker, Kohel (CR26) 2002 Schoof (CR6) 1985; 44 Koblitz (CR4) 1987; 48 Vercauteren, Preneel, Vandewalle (CR22) 2001; 2045 Schoof (CR11) 1995; 7 Carls (CR25) 2004 Gaudry, Zheng (CR14) 2002 Cohen, Frey, Avanzi (CR21) 2005 CR9 Elkies (CR10) 1998; 7 Satoh, Skjernaa, Taguchi (CR13) 2003; 9 Diffie, Hellman (CR1) 1976; 22 Atkin, Morain (CR7) 1993; 61 Miller (CR5) 1985 |
| References_xml | – start-page: 292 year: 2002 end-page: 307 ident: CR26 article-title: Fast elliptic curve point counting using Gaussian normal basis publication-title: Algorithmic Number Theory doi: 10.1007/3-540-45455-1_24 – start-page: 417 year: 1985 end-page: 426 ident: CR5 article-title: Use of elliptic curves in cryptography publication-title: Conference on the Theory and Application of Cryptographic Techniques – year: 2004 ident: CR25 publication-title: A Generalized Artihmetic Geometric Mean – volume: 61 start-page: 29 issue: 203 year: 1993 end-page: 68 ident: CR7 article-title: Elliptic curves and primality proving publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1993-1199989-X – volume: 22 start-page: 644 issue: 6 year: 1976 end-page: 654 ident: CR1 article-title: New directions in cryptography publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1976.1055638 – start-page: 311 year: 2002 end-page: 327 ident: CR14 article-title: A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2 publication-title: Advances in Cryptology — ASIACRYPT – volume: 7 start-page: 21 year: 1998 end-page: 76 ident: CR10 article-title: Elliptic and modular curves over finite fields and related computational issues publication-title: AMS IP Studies in Advanced Mathematics doi: 10.1090/amsip/007/03 – volume: 1 start-page: 182 issue: 3 year: 1966 end-page: 196 ident: CR19 article-title: Multiplikation groβer Zahlen publication-title: Computing doi: 10.1007/BF02234362 – volume: 31 start-page: 469 issue: 4 year: 1985 end-page: 472 ident: CR3 article-title: A public key cryptosystem and a signature scheme based on discrete logarithms publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1985.1057074 – volume: 48 start-page: 203 issue: 177 year: 1987 end-page: 209 ident: CR4 article-title: Elliptic curve cryptosystems publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1987-0866109-5 – volume: 44 start-page: 483 issue: 170 year: 1985 end-page: 494 ident: CR6 article-title: Elliptic curves over finite fields and the computation of square roots mod publication-title: Mathematics of Computation – volume: 2045 start-page: 1 year: 2001 end-page: 13 ident: CR22 article-title: A memory efficient version of Satohs algorithm publication-title: International Conference on the Theory and Applications of Cryptographic Techniques – volume: 193 start-page: 563 issue: 2 year: 2021 end-page: 617 ident: CR20 article-title: Integer multiplication in time o ( log ) publication-title: Annals of Mathematics doi: 10.4007/annals.2021.193.2.4 – year: 2005 ident: CR21 publication-title: Handbook of Elliptic and Hyperelliptic Curve Cryptography doi: 10.1201/9781420034981 – volume: 7 start-page: 595 year: 1963 end-page: 596 ident: CR18 article-title: Multiplication of multidigit numbers on automata publication-title: Soviet Physics Doklady – volume: 15 start-page: 247 issue: 4 year: 2000 end-page: 270 ident: CR12 article-title: The canonical lift of an ordinary elliptic curve over a finite field and its point counting publication-title: Journal-Ramanujan Mathematical Society – year: 1984 ident: CR24 article-title: The arithmetic-geometric mean of Gauss publication-title: Pi: A Source Book – ident: CR15 – start-page: 124 year: 2003 end-page: 136 ident: CR16 article-title: The AGM- ( ) Heegner point lifting algorithm and elliptic curve point counting publication-title: International Conference on the Theory and Application of Cryptology and Information Security – ident: CR17 – volume: 61 start-page: 29 issue: 203 year: 1993 end-page: 68 ident: CR8 article-title: Elliptic curves and primality proving publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1993-1199989-X – volume: 7 start-page: 219 issue: 1 year: 1995 end-page: 254 ident: CR11 article-title: Counting points on elliptic curves over finite fields publication-title: Journal de théorie des nombres de Bordeaux doi: 10.5802/jtnb.142 – volume: 21 start-page: 120 issue: 2 year: 1978 end-page: 126 ident: CR2 article-title: A method for obtaining digital signatures and public-key cryptosystems publication-title: Communications of the ACM doi: 10.1145/359340.359342 – ident: CR9 – volume: 273 start-page: 305 year: 1971 end-page: 347 ident: CR23 article-title: Isogenies entre courbes elliptiques publication-title: CR Acad. Sci. Paris, Series A – volume: 9 start-page: 89 issue: 1 year: 2003 end-page: 101 ident: CR13 article-title: Fast computation of canonical lifts of elliptic curves and its application to point counting publication-title: Finite Fields and Their Applications doi: 10.1016/S1071-5797(02)00013-8 |
| SSID | ssj0036908 |
| Score | 2.3179846 |
| Snippet | Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 1738 |
| SubjectTerms | Algorithms Complex Systems Complexity Control Curves Fields (mathematics) Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Statistics Systems Theory |
| Title | A Generalized MSST Algorithm for Counting Points of Elliptic Curves over Fpn |
| URI | https://link.springer.com/article/10.1007/s11424-024-2452-5 https://www.proquest.com/docview/3066865600 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1559-7067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036908 issn: 1009-6124 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1559-7067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036908 issn: 1009-6124 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1559-7067 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036908 issn: 1009-6124 databaseCode: U2A dateStart: 20060308 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66XeZBdCpO58jBmwSyJG3TYxmbQ50I22CeStOkKmg71s6Dv96XrnUqXjwmKT2893j5Pt57XxC6TKiKNMBUYrSkRPhAd6RgmrBYGkBJvqbGEsXJvTuei5uFs6jmuPO6270uSZaZejvsZoeyCNwpxFYLibOLmo5V84IgnrOgTr8c6N5m_o36wIuYqEuZf_3iB6z8VQktL5jRAdqvkCEONq48RDsmbaO9b3qBsJp8iazmbdSyQHGjs3yE7gJcKUi_fBiNJ9PpDAevTxlw_-c3DMgUD6pXIfBD9pIWOc4SbBs2IGXEeLBevRvYgrjGo2V6jOaj4WwwJtVLCWQJ8KkgMVeJ1n2uPS8Gp1BqgKlwz1CujDBRX2iPM8WEkjQCvMK5USIygL20TLwoUfwENdIsNacIC-b5cOoy4WrBpYqATzDpODpxmfGcqIO6tcnCKtzzEHiHK62MD-2gq9qM2-OtNLK1fwj2D639Q-fsX1-foxazvivb77qoUazW5gIgQaF6qBlcP94Oe2UofALQVa8b |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwELWgDMCAoIAoFPDAhiy5tpM4Y1RRFWgqpLZStyiOHagESdWmDHw95zShgFgYbUcZ7k7n93R3zwjdpFTFGmAqMVpSInygO1IwTVgiDaAkX1NjiWI4dPsT8TB1ptUc97Ludq9LkmWm3gy72aEsAncKsdVC4myjHatfZQXzJyyo0y8Hureef6M-8CIm6lLmX7_4ASt_VULLC6Z3iA4qZIiDtSuP0JbJmmj_m14grMIvkdVlE-1ZoLjWWT5GgwBXCtKzD6NxOBqNcfD6nAP3f3nDgExxt3oVAj_ls6xY4jzFtmEDUkaCu6vFu4EtiGvcm2cnaNK7G3f7pHopgcwBPhUk4SrVusO15yXgFEoNMBXuGcqVESbuCO1xpphQksaAVzg3SsQGsJeWqRenip-iRpZn5gxhwTwfTl0mXC24VDHwCSYdR6cuM54Tt1C7NllUhfsyAt7hSivjQ1votjbj5ngjjWztH4H9I2v_yDn_19fXaLc_DgfR4H74eIH2mPVj2YrXRo1isTKXAA8KdVWGwyek8rBz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSKgMCAqIQgEPbMiqaztfY1SI-GirSm2lblFcO1AJkqpJGfj1nJuEAmJhtB1luDvZ7-nu3iF0HVMZKYCpRCuXEuEB3XEFU4TNXA0oyVNUG6LYH9j3E_E4tablnNOsqnavUpJFT4NRaUry9kLF7U3jm2nQIvC-EJM5JNY22hFGJwECesL86irmQP2KXjjqAUdiokpr_vWLHxDzV1Z0_dgEB2i_RInYL9x6iLZ00kB737QDYdX_ElzNGqhuQGOhuXyEej4u1aTnH1rh_mg0xv7rc7qc5y9vGFAq7pYTIvAwnSd5htMYm-INuD5muLtavmvYghjHwSI5RpPgbty9J-XUBLIAKJWTGZexUh2uHGcGDqJUA2vhjqZcaqGjjlAOZ5IJ6dIIsAvnWopIAw5TbuxEseQnqJakiT5FWDDHg1ObCVsJ7soIuAVzLUvFNtOOFTVRqzJZWIZ-FgIHsV0j6UOb6KYy4-Z4I5Ns7B-C_UNj_9A6-9fXV2h3eBuEvYfB0zmqM-PGdVVeC9Xy5UpfAFLI5eU6Gj4BQW20rw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalized+MSST+Algorithm+for+Counting+Points+of+Elliptic+Curves+over+Fpn&rft.jtitle=Journal+of+systems+science+and+complexity&rft.au=Li%2C+Xiao&rft.au=Lv%2C+Chang&rft.au=Pan%2C+Zhizhong&rft.date=2024-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1009-6124&rft.eissn=1559-7067&rft.volume=37&rft.issue=4&rft.spage=1738&rft.epage=1754&rft_id=info:doi/10.1007%2Fs11424-024-2452-5&rft.externalDocID=10_1007_s11424_024_2452_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-6124&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-6124&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-6124&client=summon |