A Generalized MSST Algorithm for Counting Points of Elliptic Curves over Fpn

Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p -adic algorithms, such as SST algorithm, generalized AGM algorithm, Ke...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems science and complexity Vol. 37; no. 4; pp. 1738 - 1754
Main Authors Li, Xiao, Lv, Chang, Pan, Zhizhong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1009-6124
1559-7067
DOI10.1007/s11424-024-2452-5

Cover

Abstract Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p -adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two n -bit numbers is denoted as O ( n μ ), then the time complexity of the generalized MSST algorithm is O ( n 2 μ + 1 1 + μ ) , which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm.
AbstractList Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p-adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two n-bit numbers is denoted as O(nμ), then the time complexity of the generalized MSST algorithm is O(n2μ+11+μ), which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm.
Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves. At present, there are many p -adic algorithms, such as SST algorithm, generalized AGM algorithm, Kedlaya algorithm, etc., which can deal with the situation of finite fields of small characteristics. In this paper, the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic, and propose the generalized MSST algorithm. The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm. If the time complexity of the multiplication of two n -bit numbers is denoted as O ( n μ ), then the time complexity of the generalized MSST algorithm is O ( n 2 μ + 1 1 + μ ) , which is the same as the improved SST algorithm. In practical experiments, the running time of the generalized MSST algorithm is less than that of the improved SST algorithm.
Author Li, Xiao
Pan, Zhizhong
Lv, Chang
Author_xml – sequence: 1
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences, School of Cyber Security, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chang
  surname: Lv
  fullname: Lv, Chang
  email: lvchang@iie.ac.cn
  organization: Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences
– sequence: 3
  givenname: Zhizhong
  surname: Pan
  fullname: Pan, Zhizhong
  organization: Huawei Technologies Co., Ltd
BookMark eNpFkE9Lw0AQxRepYFv9AN4WPEdn_6fHEtoqVBRazyGbTGpK3I2bpAc_vVsqeBhmGB5v3vxmZOK8Q0LuGTwyAPPUMya5TCAWl4on6opMmVKLxIA2kzgDLBLNuLwhs74_Agi9gHRKtku6QYehaJsfrOjrbreny_bgQzN8ftHaB5r50Q2NO9B337ihp76mq7ZtuqEpaTaGE8bVCQNdd-6WXNdF2-PdX5-Tj_Vqnz0n27fNS7bcJh3nekhKYeuqYqIyprRYAiCkWhgEYVFiwWRlBLdc2hQKboQQaGWBQvEqrU1RWzEnDxffLvjvEfshP_oxuHgyF6B1qpWOD84Jv6j6LsT8GP5VDPIztfxCLY_U8jO1XIlfd-hhCA
Cites_doi 10.1007/3-540-45455-1_24
10.1090/S0025-5718-1993-1199989-X
10.1109/TIT.1976.1055638
10.1090/amsip/007/03
10.1007/BF02234362
10.1109/TIT.1985.1057074
10.1090/S0025-5718-1987-0866109-5
10.4007/annals.2021.193.2.4
10.1201/9781420034981
10.5802/jtnb.142
10.1145/359340.359342
10.1016/S1071-5797(02)00013-8
ContentType Journal Article
Copyright The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024
The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.
Copyright_xml – notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024
– notice: The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2024.
DOI 10.1007/s11424-024-2452-5
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1559-7067
EndPage 1754
ExternalDocumentID 10_1007_s11424_024_2452_5
GroupedDBID -5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PT4
Q--
QOS
R89
R9I
REI
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z81
Z83
Z88
ZMTXR
~A9
ABAKF
ABDBE
ABFSG
ABRTQ
ACAOD
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-p226t-c3bfdd13d77cbec00e08637e03be4ea14d732b24b80a27333eb4ae352d8f7afb3
IEDL.DBID U2A
ISSN 1009-6124
IngestDate Wed Sep 17 23:58:05 EDT 2025
Fri Feb 21 02:41:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords generalized AGM algorithm
Elliptic curve
generalized MSST algorithm
SST algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p226t-c3bfdd13d77cbec00e08637e03be4ea14d732b24b80a27333eb4ae352d8f7afb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3066865600
PQPubID 2044418
PageCount 17
ParticipantIDs proquest_journals_3066865600
springer_journals_10_1007_s11424_024_2452_5
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of systems science and complexity
PublicationTitleAbbrev J Syst Sci Complex
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Atkin, Morain (CR8) 1993; 61
Satoh (CR12) 2000; 15
Kohel (CR16) 2003
ElGamal (CR3) 1985; 31
Harvey, Der Hoeven (CR20) 2021; 193
Cox (CR24) 1984
CR17
CR15
Karatsuba (CR18) 1963; 7
Velu (CR23) 1971; 273
Schönhage (CR19) 1966; 1
Rivest, Shamir, Adleman (CR2) 1978; 21
Kim, Park, Cheon, Fieker, Kohel (CR26) 2002
Schoof (CR6) 1985; 44
Koblitz (CR4) 1987; 48
Vercauteren, Preneel, Vandewalle (CR22) 2001; 2045
Schoof (CR11) 1995; 7
Carls (CR25) 2004
Gaudry, Zheng (CR14) 2002
Cohen, Frey, Avanzi (CR21) 2005
CR9
Elkies (CR10) 1998; 7
Satoh, Skjernaa, Taguchi (CR13) 2003; 9
Diffie, Hellman (CR1) 1976; 22
Atkin, Morain (CR7) 1993; 61
Miller (CR5) 1985
References_xml – start-page: 292
  year: 2002
  end-page: 307
  ident: CR26
  article-title: Fast elliptic curve point counting using Gaussian normal basis
  publication-title: Algorithmic Number Theory
  doi: 10.1007/3-540-45455-1_24
– start-page: 417
  year: 1985
  end-page: 426
  ident: CR5
  article-title: Use of elliptic curves in cryptography
  publication-title: Conference on the Theory and Application of Cryptographic Techniques
– year: 2004
  ident: CR25
  publication-title: A Generalized Artihmetic Geometric Mean
– volume: 61
  start-page: 29
  issue: 203
  year: 1993
  end-page: 68
  ident: CR7
  article-title: Elliptic curves and primality proving
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1993-1199989-X
– volume: 22
  start-page: 644
  issue: 6
  year: 1976
  end-page: 654
  ident: CR1
  article-title: New directions in cryptography
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1976.1055638
– start-page: 311
  year: 2002
  end-page: 327
  ident: CR14
  article-title: A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2
  publication-title: Advances in Cryptology — ASIACRYPT
– volume: 7
  start-page: 21
  year: 1998
  end-page: 76
  ident: CR10
  article-title: Elliptic and modular curves over finite fields and related computational issues
  publication-title: AMS IP Studies in Advanced Mathematics
  doi: 10.1090/amsip/007/03
– volume: 1
  start-page: 182
  issue: 3
  year: 1966
  end-page: 196
  ident: CR19
  article-title: Multiplikation groβer Zahlen
  publication-title: Computing
  doi: 10.1007/BF02234362
– volume: 31
  start-page: 469
  issue: 4
  year: 1985
  end-page: 472
  ident: CR3
  article-title: A public key cryptosystem and a signature scheme based on discrete logarithms
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1985.1057074
– volume: 48
  start-page: 203
  issue: 177
  year: 1987
  end-page: 209
  ident: CR4
  article-title: Elliptic curve cryptosystems
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1987-0866109-5
– volume: 44
  start-page: 483
  issue: 170
  year: 1985
  end-page: 494
  ident: CR6
  article-title: Elliptic curves over finite fields and the computation of square roots mod
  publication-title: Mathematics of Computation
– volume: 2045
  start-page: 1
  year: 2001
  end-page: 13
  ident: CR22
  article-title: A memory efficient version of Satohs algorithm
  publication-title: International Conference on the Theory and Applications of Cryptographic Techniques
– volume: 193
  start-page: 563
  issue: 2
  year: 2021
  end-page: 617
  ident: CR20
  article-title: Integer multiplication in time o ( log )
  publication-title: Annals of Mathematics
  doi: 10.4007/annals.2021.193.2.4
– year: 2005
  ident: CR21
  publication-title: Handbook of Elliptic and Hyperelliptic Curve Cryptography
  doi: 10.1201/9781420034981
– volume: 7
  start-page: 595
  year: 1963
  end-page: 596
  ident: CR18
  article-title: Multiplication of multidigit numbers on automata
  publication-title: Soviet Physics Doklady
– volume: 15
  start-page: 247
  issue: 4
  year: 2000
  end-page: 270
  ident: CR12
  article-title: The canonical lift of an ordinary elliptic curve over a finite field and its point counting
  publication-title: Journal-Ramanujan Mathematical Society
– year: 1984
  ident: CR24
  article-title: The arithmetic-geometric mean of Gauss
  publication-title: Pi: A Source Book
– ident: CR15
– start-page: 124
  year: 2003
  end-page: 136
  ident: CR16
  article-title: The AGM- ( ) Heegner point lifting algorithm and elliptic curve point counting
  publication-title: International Conference on the Theory and Application of Cryptology and Information Security
– ident: CR17
– volume: 61
  start-page: 29
  issue: 203
  year: 1993
  end-page: 68
  ident: CR8
  article-title: Elliptic curves and primality proving
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1993-1199989-X
– volume: 7
  start-page: 219
  issue: 1
  year: 1995
  end-page: 254
  ident: CR11
  article-title: Counting points on elliptic curves over finite fields
  publication-title: Journal de théorie des nombres de Bordeaux
  doi: 10.5802/jtnb.142
– volume: 21
  start-page: 120
  issue: 2
  year: 1978
  end-page: 126
  ident: CR2
  article-title: A method for obtaining digital signatures and public-key cryptosystems
  publication-title: Communications of the ACM
  doi: 10.1145/359340.359342
– ident: CR9
– volume: 273
  start-page: 305
  year: 1971
  end-page: 347
  ident: CR23
  article-title: Isogenies entre courbes elliptiques
  publication-title: CR Acad. Sci. Paris, Series A
– volume: 9
  start-page: 89
  issue: 1
  year: 2003
  end-page: 101
  ident: CR13
  article-title: Fast computation of canonical lifts of elliptic curves and its application to point counting
  publication-title: Finite Fields and Their Applications
  doi: 10.1016/S1071-5797(02)00013-8
SSID ssj0036908
Score 2.3179846
Snippet Elliptic curve cryptography is an important part of nowaday’s public key cryptosystem. Counting points of elliptic curves over finite fields is of great...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 1738
SubjectTerms Algorithms
Complex Systems
Complexity
Control
Curves
Fields (mathematics)
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Statistics
Systems Theory
Title A Generalized MSST Algorithm for Counting Points of Elliptic Curves over Fpn
URI https://link.springer.com/article/10.1007/s11424-024-2452-5
https://www.proquest.com/docview/3066865600
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1559-7067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036908
  issn: 1009-6124
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1559-7067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036908
  issn: 1009-6124
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1559-7067
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036908
  issn: 1009-6124
  databaseCode: U2A
  dateStart: 20060308
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66XeZBdCpO58jBmwSyJG3TYxmbQ50I22CeStOkKmg71s6Dv96XrnUqXjwmKT2893j5Pt57XxC6TKiKNMBUYrSkRPhAd6RgmrBYGkBJvqbGEsXJvTuei5uFs6jmuPO6270uSZaZejvsZoeyCNwpxFYLibOLmo5V84IgnrOgTr8c6N5m_o36wIuYqEuZf_3iB6z8VQktL5jRAdqvkCEONq48RDsmbaO9b3qBsJp8iazmbdSyQHGjs3yE7gJcKUi_fBiNJ9PpDAevTxlw_-c3DMgUD6pXIfBD9pIWOc4SbBs2IGXEeLBevRvYgrjGo2V6jOaj4WwwJtVLCWQJ8KkgMVeJ1n2uPS8Gp1BqgKlwz1CujDBRX2iPM8WEkjQCvMK5USIygL20TLwoUfwENdIsNacIC-b5cOoy4WrBpYqATzDpODpxmfGcqIO6tcnCKtzzEHiHK62MD-2gq9qM2-OtNLK1fwj2D639Q-fsX1-foxazvivb77qoUazW5gIgQaF6qBlcP94Oe2UofALQVa8b
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwELWgDMCAoIAoFPDAhiy5tpM4Y1RRFWgqpLZStyiOHagESdWmDHw95zShgFgYbUcZ7k7n93R3zwjdpFTFGmAqMVpSInygO1IwTVgiDaAkX1NjiWI4dPsT8TB1ptUc97Ludq9LkmWm3gy72aEsAncKsdVC4myjHatfZQXzJyyo0y8Hureef6M-8CIm6lLmX7_4ASt_VULLC6Z3iA4qZIiDtSuP0JbJmmj_m14grMIvkdVlE-1ZoLjWWT5GgwBXCtKzD6NxOBqNcfD6nAP3f3nDgExxt3oVAj_ls6xY4jzFtmEDUkaCu6vFu4EtiGvcm2cnaNK7G3f7pHopgcwBPhUk4SrVusO15yXgFEoNMBXuGcqVESbuCO1xpphQksaAVzg3SsQGsJeWqRenip-iRpZn5gxhwTwfTl0mXC24VDHwCSYdR6cuM54Tt1C7NllUhfsyAt7hSivjQ1votjbj5ngjjWztH4H9I2v_yDn_19fXaLc_DgfR4H74eIH2mPVj2YrXRo1isTKXAA8KdVWGwyek8rBz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSKgMCAqIQgEPbMiqaztfY1SI-GirSm2lblFcO1AJkqpJGfj1nJuEAmJhtB1luDvZ7-nu3iF0HVMZKYCpRCuXEuEB3XEFU4TNXA0oyVNUG6LYH9j3E_E4tablnNOsqnavUpJFT4NRaUry9kLF7U3jm2nQIvC-EJM5JNY22hFGJwECesL86irmQP2KXjjqAUdiokpr_vWLHxDzV1Z0_dgEB2i_RInYL9x6iLZ00kB737QDYdX_ElzNGqhuQGOhuXyEej4u1aTnH1rh_mg0xv7rc7qc5y9vGFAq7pYTIvAwnSd5htMYm-INuD5muLtavmvYghjHwSI5RpPgbty9J-XUBLIAKJWTGZexUh2uHGcGDqJUA2vhjqZcaqGjjlAOZ5IJ6dIIsAvnWopIAw5TbuxEseQnqJakiT5FWDDHg1ObCVsJ7soIuAVzLUvFNtOOFTVRqzJZWIZ-FgIHsV0j6UOb6KYy4-Z4I5Ns7B-C_UNj_9A6-9fXV2h3eBuEvYfB0zmqM-PGdVVeC9Xy5UpfAFLI5eU6Gj4BQW20rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalized+MSST+Algorithm+for+Counting+Points+of+Elliptic+Curves+over+Fpn&rft.jtitle=Journal+of+systems+science+and+complexity&rft.au=Li%2C+Xiao&rft.au=Lv%2C+Chang&rft.au=Pan%2C+Zhizhong&rft.date=2024-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1009-6124&rft.eissn=1559-7067&rft.volume=37&rft.issue=4&rft.spage=1738&rft.epage=1754&rft_id=info:doi/10.1007%2Fs11424-024-2452-5&rft.externalDocID=10_1007_s11424_024_2452_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-6124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-6124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-6124&client=summon