(k,n-k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel

Max - Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G = ( V , E ) can be partitioned into two disjoint subsets, A and B , such that there exist at least p edges with one endpoint in A and the other endpoint in B . It is well known that if p...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 80; no. 12; pp. 3844 - 3860
Main Authors Saurabh, Saket, Zehavi, Meirav
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
DOI10.1007/s00453-018-0418-5

Cover

Abstract Max - Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G = ( V , E ) can be partitioned into two disjoint subsets, A and B , such that there exist at least p edges with one endpoint in A and the other endpoint in B . It is well known that if p ≤ | E | / 2 , the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called ( k , n - k ) - Max - Cut , restricts the size of the subset A to be exactly k . For the ( k , n - k ) - Max - Cut problem, we obtain an O ∗ ( 2 p ) -time algorithm, improving upon the previous best O ∗ ( 4 p + o ( p ) ) -time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a certain independent set of the graph  G .
AbstractList Max - Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G = ( V , E ) can be partitioned into two disjoint subsets, A and B , such that there exist at least p edges with one endpoint in A and the other endpoint in B . It is well known that if p ≤ | E | / 2 , the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called ( k , n - k ) - Max - Cut , restricts the size of the subset A to be exactly k . For the ( k , n - k ) - Max - Cut problem, we obtain an O ∗ ( 2 p ) -time algorithm, improving upon the previous best O ∗ ( 4 p + o ( p ) ) -time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a certain independent set of the graph  G .
Max-Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G=(V,E) can be partitioned into two disjoint subsets, A and B, such that there exist at least p edges with one endpoint in A and the other endpoint in B. It is well known that if p≤|E|/2, the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called (k,n-k)-Max-Cut, restricts the size of the subset A to be exactly k. For the (k,n-k)-Max-Cut problem, we obtain an O∗(2p)-time algorithm, improving upon the previous best O∗(4p+o(p))-time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a certain independent set of the graph G.
Author Zehavi, Meirav
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  organization: The Institute of Mathematical Sciences, University of Bergen
– sequence: 2
  givenname: Meirav
  surname: Zehavi
  fullname: Zehavi, Meirav
  email: meirav.zehavi@ii.uib.no
  organization: University of Bergen
BookMark eNpFkEtKA0EURQuJYBJdgLMCJwlY-l79ustZaOIHI3EQx0WZrsROOtVtf0B34A7cnyuxQwQn707OvQ_OgPRCETwh5whXCBBd1wBSCQYYM5DdUUekj1JwBkpij_QBo5hJjdEJGdT1BgB5ZHSfJKPtZWDbMXtyHyxpmxs6CXT-8_U94uWYLbKdp5N8XVRZ87ajLqTU0eci_wzFLnM5ffRV8PkpOV65vPZnfzkkL7fTRXLPZvO7h2QyYyXnumGoUm24MujjVCjlHUIEXEsPwixT54xH6dxScBObdBlzswe0kbAyq9fYSzEkF4fdsireW183dlO0VeheWo4ceNfUqqP4garLKgtrX_1TCHYvyx5k2U6W3cuySvwCzs1bWQ
Cites_doi 10.1007/s00453-014-9870-z
10.1016/0022-0000(91)90023-X
10.1007/978-3-319-21275-3
10.1007/s00453-014-9920-6
10.1016/j.ipl.2007.05.014
10.1007/3-540-48777-8_2
10.1016/j.tcs.2013.10.026
10.1145/227683.227684
10.1006/jagm.1998.0996
10.1007/978-1-4471-5559-1
10.1093/comjnl/bxm086
10.1006/jagm.2001.1183
10.1137/S0097539705447372
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID JQ2
DOI 10.1007/s00453-018-0418-5
DatabaseName ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3860
ExternalDocumentID 10_1007_s00453_018_0418_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
JQ2
ID FETCH-LOGICAL-p226t-15d692591e8d355ea1070264e039cdaa9e14aac32989dc829a1076940f9fb8e43
IEDL.DBID U2A
ISSN 0178-4617
IngestDate Thu Oct 02 16:35:14 EDT 2025
Fri Feb 21 02:43:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Bounded search tree
Parameterized algorithm
Kernel
Max-Cut
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p226t-15d692591e8d355ea1070264e039cdaa9e14aac32989dc829a1076940f9fb8e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2120232965
PQPubID 2043795
PageCount 17
ParticipantIDs proquest_journals_2120232965
springer_journals_10_1007_s00453_018_0418_5
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (CR8) 2015
CR2
Ageev, Sviridenko (CR1) 1999
Goemans, Williamson (CR11) 1995; 42
Raman, Saurabh (CR15) 2007; 104
CR5
Downey, Fellows (CR9) 2013
Feige, Langberg (CR10) 2001; 41
CR16
Crowston, Gutin, Jones, Muciaccia (CR6) 2013; 513
Papadimitriou, Yannakakis (CR14) 1991; 43
Khot, Kindler, Mossel, O’Donnell (CR12) 2007; 37
Bonnet, Escoffier, Paschos, Tourniaire (CR3) 2015; 71
Cai (CR4) 2008; 51
Mahajan, Raman (CR13) 1999; 31
Crowston, Jones, Mnich (CR7) 2015; 72
References_xml – volume: 72
  start-page: 734
  issue: 3
  year: 2015
  end-page: 757
  ident: CR7
  article-title: Max-cut parameterized above the Edwards-Erdős bound
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9870-z
– volume: 43
  start-page: 425
  issue: 3
  year: 1991
  end-page: 440
  ident: CR14
  article-title: Optimization, approximation, and complexity classes
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90023-X
– year: 2015
  ident: CR8
  publication-title: Parameterized Algorithms
  doi: 10.1007/978-3-319-21275-3
– volume: 71
  start-page: 566
  issue: 3
  year: 2015
  end-page: 580
  ident: CR3
  article-title: Multi-parameter analysis for local graph partitioning problems: using greediness for parameterization
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9920-6
– volume: 104
  start-page: 65
  issue: 2
  year: 2007
  end-page: 72
  ident: CR15
  article-title: Improved fixed parameter tractable algorithms for two “edge” problems: MAXCUT and MAXDAG
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2007.05.014
– start-page: 17
  year: 1999
  end-page: 30
  ident: CR1
  article-title: Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts
  publication-title: Integer Programming and Combinatorial Optimization
  doi: 10.1007/3-540-48777-8_2
– ident: CR2
– ident: CR16
– ident: CR5
– volume: 513
  start-page: 53
  year: 2013
  end-page: 64
  ident: CR6
  article-title: Maximum balanced subgraph problem parameterized above lower bound
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2013.10.026
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  end-page: 1145
  ident: CR11
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 31
  start-page: 335
  issue: 2
  year: 1999
  end-page: 354
  ident: CR13
  article-title: Parameterizing above guaranteed values: MaxSat and MaxCut
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1998.0996
– year: 2013
  ident: CR9
  publication-title: Fundamentals of Parameterized Complexity
  doi: 10.1007/978-1-4471-5559-1
– volume: 51
  start-page: 102
  issue: 1
  year: 2008
  end-page: 121
  ident: CR4
  article-title: Parameter complexity of cardinality constrained optimization problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxm086
– volume: 41
  start-page: 174
  issue: 2
  year: 2001
  end-page: 211
  ident: CR10
  article-title: Approximation algorithms for maximization problems arising in graph partitioning
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2001.1183
– volume: 37
  start-page: 319
  issue: 1
  year: 2007
  end-page: 357
  ident: CR12
  article-title: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?
  publication-title: SICOMP
  doi: 10.1137/S0097539705447372
SSID ssj0012796
Score 2.2073019
Snippet Max - Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G = ( V , E ) can be partitioned into two...
Max-Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G=(V,E) can be partitioned into two disjoint...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 3844
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Dynamic programming
Mathematics of Computing
Polynomials
Set theory
Theory of Computation
Trees
Title (k,n-k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel
URI https://link.springer.com/article/10.1007/s00453-018-0418-5
https://www.proquest.com/docview/2120232965
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0obNz4NqJIZuECopOUdqbtuCsEJBLQhSS4ai6dQROwECiJ_oF_4P_5Jd6pLUbjxk3bpJNZ3DvtOSf3Rci5jMCKbNPh0gMUKN5IMSmkYohEyH8l98dpE9de3-0M-M1QDLM67mWe7Z6HJNM_9brYzbAPk_vjM4vjRWySojDdvPAQD-xgHTqwvXQolxk7zzjicx7K_GuLH7TyVyQ0BZj2LtnOmCENvly5RzZ0vE928qkLNPsID0izOrmM2aTGevDCmqvkigYxvf14e6_a8xozJR00mD7OUPQ_PVOIFQV6N5u-mvJj3L6rF7GeHpJBu3Xf7LBsFAKbIz9KWF0oV6JSqWtfIUPQgKoN1RPXliMjBSB1nQNEjumnriLflmaBK7k1luORr7lzRArxLNbHhAKSPkfzseu5wEG4SAAdB5_ABmEp0CVSzm0SZud5GSLAIbjb0hUlcpHb6fv1uvdxauAQDRwaA4fi5F-rT8mWbZyTZouUSSFZrPQZYn4yqpBi0G40-uZ-_dBtVVKffwJeCaOb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsJAEJ4oHPQi_kYUdQ8eILqktNvS9UYIiPKjB0jw1CztVg1YCJREfQLfwPfzSZwtLUbixUvbpJvN5utu55vMzDcA59wVmqsrhcuyQAelPPAoN7lH0RIh_-XM9iMR13bHavTYbd_sx3XcsyTbPQlJRn_qZbGbYh8q98emGsOLuQ5pvDM9BenK9UOztgwe6OWoLZdqPE8ZWugkmPnXJL-I5UosNDIx9Qx0k8UtMkuGxXk4KLrvK7qN_1z9NmzFlJNUFntkB9ZksAuZpJ0DiU_3HlTzw8uADgu0LV5pdR5ekUpA7r4-PvP6pEBVrQipjB7H0-fw6YWIwCOC3I9Hb6quGadvymkgR_vQq9e61QaNeyzQCRKvkJZMz-LoApWk7SH1kALdQXTLmNQM7npCcFliQriGEmr3XFvnaoDFmeZzf2BLZhxAKhgH8hCIQDZpSOZbZUswYVrILA0Dn4QuTM0TMgu5BGonPigzBy0nsgadW2YWLhLkfl4vRZUj-ByEz1HwOebRv0afwUaj2245rZtO8xg2dfUZopSUHKTC6VyeILEIB6fxRvoGzQ3ANQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEG4UE-PFfyOK2oMHiDYu3e5PvW1QgiLIQRJum7LtqgELgSXRN_ANfD-fxOmyi9F48bJpsk0PM23mm8zM9yF0yiNhRdQwXHoCEhSvLwl3uCQQiQD_cubHKYlrq-02uuy25_QyndNp3u2elyTnMw2GpUknF2MZXywG3wwSMX1APrEYfJxltMIMTwJc6C4NFmUE6qUCXUaCnjCI1XlZ868jfkDMX1XRNNjUN9F6hhJxMHfrFlpSehtt5AoMOHuQO6hWHpxrMqiQlngltVlyiQON7z_fP8p0XCFmvAMHw8fR5Dl5esFCSyxwZzR8M6PIcHxTTbQa7qJu_fqh1iCZLAIZA1ZKSNWRLoespap8CWhBCcjgIJNiyrJ5JIXgqsqEiGzDrS4jn3KzweXMinnc9xWz91BBj7TaR1gAALQVi13PFUw4LoBB24aVoMKxpFBFVMptEmZ3expCsINAT7nrFNFZbqfv3wse5NTAIRg4NAYOnYN_7T5Bq52renh3024eojVq_JQ2kZRQIZnM1BFAgaR_nLr7C_lZp7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28+k+%2C+n+-+k+%29+-Max-Cut%3A+An+O+%E2%88%97+%28+2+p+%29+-Time+Algorithm+and+a+Polynomial+Kernel&rft.jtitle=Algorithmica&rft.au=Saket+Saurabh&rft.au=Zehavi%2C+Meirav&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=80&rft.issue=12&rft.spage=3844&rft.epage=3860&rft_id=info:doi/10.1007%2Fs00453-018-0418-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon