(k,n-k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel
Max - Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G = ( V , E ) can be partitioned into two disjoint subsets, A and B , such that there exist at least p edges with one endpoint in A and the other endpoint in B . It is well known that if p...
Saved in:
| Published in | Algorithmica Vol. 80; no. 12; pp. 3844 - 3860 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-4617 1432-0541 |
| DOI | 10.1007/s00453-018-0418-5 |
Cover
| Abstract | Max
-
Cut
is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph
G
=
(
V
,
E
)
can be partitioned into two disjoint subsets,
A
and
B
, such that there exist at least
p
edges with one endpoint in
A
and the other endpoint in
B
. It is well known that if
p
≤
|
E
|
/
2
, the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called
(
k
,
n
-
k
)
-
Max
-
Cut
, restricts the size of the subset
A
to be exactly
k
. For the
(
k
,
n
-
k
)
-
Max
-
Cut
problem, we obtain an
O
∗
(
2
p
)
-time algorithm, improving upon the previous best
O
∗
(
4
p
+
o
(
p
)
)
-time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a
certain
independent set of the graph
G
. |
|---|---|
| AbstractList | Max
-
Cut
is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph
G
=
(
V
,
E
)
can be partitioned into two disjoint subsets,
A
and
B
, such that there exist at least
p
edges with one endpoint in
A
and the other endpoint in
B
. It is well known that if
p
≤
|
E
|
/
2
, the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called
(
k
,
n
-
k
)
-
Max
-
Cut
, restricts the size of the subset
A
to be exactly
k
. For the
(
k
,
n
-
k
)
-
Max
-
Cut
problem, we obtain an
O
∗
(
2
p
)
-time algorithm, improving upon the previous best
O
∗
(
4
p
+
o
(
p
)
)
-time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a
certain
independent set of the graph
G
. Max-Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G=(V,E) can be partitioned into two disjoint subsets, A and B, such that there exist at least p edges with one endpoint in A and the other endpoint in B. It is well known that if p≤|E|/2, the answer is necessarily positive. A widely-studied variant of particular interest to parameterized complexity, called (k,n-k)-Max-Cut, restricts the size of the subset A to be exactly k. For the (k,n-k)-Max-Cut problem, we obtain an O∗(2p)-time algorithm, improving upon the previous best O∗(4p+o(p))-time algorithm, as well as the first polynomial kernel. Our algorithm relies on a delicate combination of methods and notions, including independent sets, depth-search trees, bounded search trees, dynamic programming and treewidth, while our kernel relies on examination of the closed neighborhood of the neighborhood of a certain independent set of the graph G. |
| Author | Zehavi, Meirav Saurabh, Saket |
| Author_xml | – sequence: 1 givenname: Saket surname: Saurabh fullname: Saurabh, Saket organization: The Institute of Mathematical Sciences, University of Bergen – sequence: 2 givenname: Meirav surname: Zehavi fullname: Zehavi, Meirav email: meirav.zehavi@ii.uib.no organization: University of Bergen |
| BookMark | eNpFkEtKA0EURQuJYBJdgLMCJwlY-l79ustZaOIHI3EQx0WZrsROOtVtf0B34A7cnyuxQwQn707OvQ_OgPRCETwh5whXCBBd1wBSCQYYM5DdUUekj1JwBkpij_QBo5hJjdEJGdT1BgB5ZHSfJKPtZWDbMXtyHyxpmxs6CXT-8_U94uWYLbKdp5N8XVRZ87ajLqTU0eci_wzFLnM5ffRV8PkpOV65vPZnfzkkL7fTRXLPZvO7h2QyYyXnumGoUm24MujjVCjlHUIEXEsPwixT54xH6dxScBObdBlzswe0kbAyq9fYSzEkF4fdsireW183dlO0VeheWo4ceNfUqqP4garLKgtrX_1TCHYvyx5k2U6W3cuySvwCzs1bWQ |
| Cites_doi | 10.1007/s00453-014-9870-z 10.1016/0022-0000(91)90023-X 10.1007/978-3-319-21275-3 10.1007/s00453-014-9920-6 10.1016/j.ipl.2007.05.014 10.1007/3-540-48777-8_2 10.1016/j.tcs.2013.10.026 10.1145/227683.227684 10.1006/jagm.1998.0996 10.1007/978-1-4471-5559-1 10.1093/comjnl/bxm086 10.1006/jagm.2001.1183 10.1137/S0097539705447372 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | JQ2 |
| DOI | 10.1007/s00453-018-0418-5 |
| DatabaseName | ProQuest Computer Science Collection |
| DatabaseTitle | ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 3860 |
| ExternalDocumentID | 10_1007_s00453_018_0418_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA JQ2 |
| ID | FETCH-LOGICAL-p226t-15d692591e8d355ea1070264e039cdaa9e14aac32989dc829a1076940f9fb8e43 |
| IEDL.DBID | U2A |
| ISSN | 0178-4617 |
| IngestDate | Thu Oct 02 16:35:14 EDT 2025 Fri Feb 21 02:43:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Bounded search tree Parameterized algorithm Kernel Max-Cut |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p226t-15d692591e8d355ea1070264e039cdaa9e14aac32989dc829a1076940f9fb8e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2120232965 |
| PQPubID | 2043795 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2120232965 springer_journals_10_1007_s00453_018_0418_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (CR8) 2015 CR2 Ageev, Sviridenko (CR1) 1999 Goemans, Williamson (CR11) 1995; 42 Raman, Saurabh (CR15) 2007; 104 CR5 Downey, Fellows (CR9) 2013 Feige, Langberg (CR10) 2001; 41 CR16 Crowston, Gutin, Jones, Muciaccia (CR6) 2013; 513 Papadimitriou, Yannakakis (CR14) 1991; 43 Khot, Kindler, Mossel, O’Donnell (CR12) 2007; 37 Bonnet, Escoffier, Paschos, Tourniaire (CR3) 2015; 71 Cai (CR4) 2008; 51 Mahajan, Raman (CR13) 1999; 31 Crowston, Jones, Mnich (CR7) 2015; 72 |
| References_xml | – volume: 72 start-page: 734 issue: 3 year: 2015 end-page: 757 ident: CR7 article-title: Max-cut parameterized above the Edwards-Erdős bound publication-title: Algorithmica doi: 10.1007/s00453-014-9870-z – volume: 43 start-page: 425 issue: 3 year: 1991 end-page: 440 ident: CR14 article-title: Optimization, approximation, and complexity classes publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90023-X – year: 2015 ident: CR8 publication-title: Parameterized Algorithms doi: 10.1007/978-3-319-21275-3 – volume: 71 start-page: 566 issue: 3 year: 2015 end-page: 580 ident: CR3 article-title: Multi-parameter analysis for local graph partitioning problems: using greediness for parameterization publication-title: Algorithmica doi: 10.1007/s00453-014-9920-6 – volume: 104 start-page: 65 issue: 2 year: 2007 end-page: 72 ident: CR15 article-title: Improved fixed parameter tractable algorithms for two “edge” problems: MAXCUT and MAXDAG publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2007.05.014 – start-page: 17 year: 1999 end-page: 30 ident: CR1 article-title: Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts publication-title: Integer Programming and Combinatorial Optimization doi: 10.1007/3-540-48777-8_2 – ident: CR2 – ident: CR16 – ident: CR5 – volume: 513 start-page: 53 year: 2013 end-page: 64 ident: CR6 article-title: Maximum balanced subgraph problem parameterized above lower bound publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2013.10.026 – volume: 42 start-page: 1115 issue: 6 year: 1995 end-page: 1145 ident: CR11 article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 31 start-page: 335 issue: 2 year: 1999 end-page: 354 ident: CR13 article-title: Parameterizing above guaranteed values: MaxSat and MaxCut publication-title: J. Algorithms doi: 10.1006/jagm.1998.0996 – year: 2013 ident: CR9 publication-title: Fundamentals of Parameterized Complexity doi: 10.1007/978-1-4471-5559-1 – volume: 51 start-page: 102 issue: 1 year: 2008 end-page: 121 ident: CR4 article-title: Parameter complexity of cardinality constrained optimization problems publication-title: Comput. J. doi: 10.1093/comjnl/bxm086 – volume: 41 start-page: 174 issue: 2 year: 2001 end-page: 211 ident: CR10 article-title: Approximation algorithms for maximization problems arising in graph partitioning publication-title: J. Algorithms doi: 10.1006/jagm.2001.1183 – volume: 37 start-page: 319 issue: 1 year: 2007 end-page: 357 ident: CR12 article-title: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? publication-title: SICOMP doi: 10.1137/S0097539705447372 |
| SSID | ssj0012796 |
| Score | 2.2073019 |
| Snippet | Max
-
Cut
is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph
G
=
(
V
,
E
)
can be partitioned into two... Max-Cut is a well-known classical NP-hard problem. This problem asks whether the vertex-set of a given graph G=(V,E) can be partitioned into two disjoint... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 3844 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Dynamic programming Mathematics of Computing Polynomials Set theory Theory of Computation Trees |
| Title | (k,n-k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel |
| URI | https://link.springer.com/article/10.1007/s00453-018-0418-5 https://www.proquest.com/docview/2120232965 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AFBBN dateStart: 19861101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0obNz4NqJIZuECopOUdqbtuCsEJBLQhSS4ai6dQROwECiJ_oF_4P_5Jd6pLUbjxk3bpJNZ3DvtOSf3Rci5jMCKbNPh0gMUKN5IMSmkYohEyH8l98dpE9de3-0M-M1QDLM67mWe7Z6HJNM_9brYzbAPk_vjM4vjRWySojDdvPAQD-xgHTqwvXQolxk7zzjicx7K_GuLH7TyVyQ0BZj2LtnOmCENvly5RzZ0vE928qkLNPsID0izOrmM2aTGevDCmqvkigYxvf14e6_a8xozJR00mD7OUPQ_PVOIFQV6N5u-mvJj3L6rF7GeHpJBu3Xf7LBsFAKbIz9KWF0oV6JSqWtfIUPQgKoN1RPXliMjBSB1nQNEjumnriLflmaBK7k1luORr7lzRArxLNbHhAKSPkfzseu5wEG4SAAdB5_ABmEp0CVSzm0SZud5GSLAIbjb0hUlcpHb6fv1uvdxauAQDRwaA4fi5F-rT8mWbZyTZouUSSFZrPQZYn4yqpBi0G40-uZ-_dBtVVKffwJeCaOb |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsJAEJ4oHPQi_kYUdQ8eILqktNvS9UYIiPKjB0jw1CztVg1YCJREfQLfwPfzSZwtLUbixUvbpJvN5utu55vMzDcA59wVmqsrhcuyQAelPPAoN7lH0RIh_-XM9iMR13bHavTYbd_sx3XcsyTbPQlJRn_qZbGbYh8q98emGsOLuQ5pvDM9BenK9UOztgwe6OWoLZdqPE8ZWugkmPnXJL-I5UosNDIx9Qx0k8UtMkuGxXk4KLrvK7qN_1z9NmzFlJNUFntkB9ZksAuZpJ0DiU_3HlTzw8uADgu0LV5pdR5ekUpA7r4-PvP6pEBVrQipjB7H0-fw6YWIwCOC3I9Hb6quGadvymkgR_vQq9e61QaNeyzQCRKvkJZMz-LoApWk7SH1kALdQXTLmNQM7npCcFliQriGEmr3XFvnaoDFmeZzf2BLZhxAKhgH8hCIQDZpSOZbZUswYVrILA0Dn4QuTM0TMgu5BGonPigzBy0nsgadW2YWLhLkfl4vRZUj-ByEz1HwOebRv0afwUaj2245rZtO8xg2dfUZopSUHKTC6VyeILEIB6fxRvoGzQ3ANQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTgIxEG4UE-PFfyOK2oMHiDYu3e5PvW1QgiLIQRJum7LtqgELgSXRN_ANfD-fxOmyi9F48bJpsk0PM23mm8zM9yF0yiNhRdQwXHoCEhSvLwl3uCQQiQD_cubHKYlrq-02uuy25_QyndNp3u2elyTnMw2GpUknF2MZXywG3wwSMX1APrEYfJxltMIMTwJc6C4NFmUE6qUCXUaCnjCI1XlZ868jfkDMX1XRNNjUN9F6hhJxMHfrFlpSehtt5AoMOHuQO6hWHpxrMqiQlngltVlyiQON7z_fP8p0XCFmvAMHw8fR5Dl5esFCSyxwZzR8M6PIcHxTTbQa7qJu_fqh1iCZLAIZA1ZKSNWRLoespap8CWhBCcjgIJNiyrJ5JIXgqsqEiGzDrS4jn3KzweXMinnc9xWz91BBj7TaR1gAALQVi13PFUw4LoBB24aVoMKxpFBFVMptEmZ3expCsINAT7nrFNFZbqfv3wse5NTAIRg4NAYOnYN_7T5Bq52renh3024eojVq_JQ2kZRQIZnM1BFAgaR_nLr7C_lZp7M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28+k+%2C+n+-+k+%29+-Max-Cut%3A+An+O+%E2%88%97+%28+2+p+%29+-Time+Algorithm+and+a+Polynomial+Kernel&rft.jtitle=Algorithmica&rft.au=Saket+Saurabh&rft.au=Zehavi%2C+Meirav&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=80&rft.issue=12&rft.spage=3844&rft.epage=3860&rft_id=info:doi/10.1007%2Fs00453-018-0418-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |