Generic AI models for mass transfer coefficient prediction in amine‐based CO2 absorber, Part II: RBFNN and RF model

In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in d...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 69; no. 1
Main Authors Quan, Hong, Dong, Shoulong, Zhao, Dongfang, Li, Hansheng, Geng, Junming, Liu, Helei
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2023
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.17904

Cover

Abstract In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in different CO2 absorption systems. To secure better applicability, extra parameters related to amine type and packing characteristics were introduced to reasonably describe mass transfer behaviors, respectively. Moreover, the generic models were proposed by considering all influencing factors of mass transfer in CO2 absorber column. Furthermore, the performance of BPNN, RBFNN, and RF models was completely compared and fully discussed in terms of AARE. All three generic models could predict mass transfer coefficient of CO2 absorber very well. It was found that the BPNN models provide the best predication with AAREs of below 5%. The developed generic model could serve as a fast and efficient tool for preliminary selection and evaluation of potential amines for CO2 absorption. The framework of generic ML model development was also clearly presented, which could provide theoretical basis and practical guidance for the implementation and application of ML models in the carbon capture field.
AbstractList In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in different CO2 absorption systems. To secure better applicability, extra parameters related to amine type and packing characteristics were introduced to reasonably describe mass transfer behaviors, respectively. Moreover, the generic models were proposed by considering all influencing factors of mass transfer in CO2 absorber column. Furthermore, the performance of BPNN, RBFNN, and RF models was completely compared and fully discussed in terms of AARE. All three generic models could predict mass transfer coefficient of CO2 absorber very well. It was found that the BPNN models provide the best predication with AAREs of below 5%. The developed generic model could serve as a fast and efficient tool for preliminary selection and evaluation of potential amines for CO2 absorption. The framework of generic ML model development was also clearly presented, which could provide theoretical basis and practical guidance for the implementation and application of ML models in the carbon capture field.
Author Quan, Hong
Geng, Junming
Dong, Shoulong
Liu, Helei
Zhao, Dongfang
Li, Hansheng
Author_xml – sequence: 1
  givenname: Hong
  surname: Quan
  fullname: Quan, Hong
  organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Shoulong
  orcidid: 0000-0002-4956-4160
  surname: Dong
  fullname: Dong, Shoulong
  organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: Dongfang
  surname: Zhao
  fullname: Zhao, Dongfang
  organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 4
  givenname: Hansheng
  surname: Li
  fullname: Li, Hansheng
  organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 5
  givenname: Junming
  surname: Geng
  fullname: Geng, Junming
  organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 6
  givenname: Helei
  orcidid: 0000-0002-8230-5865
  surname: Liu
  fullname: Liu, Helei
  email: lhl0925@hotmail.com, hl_liu@bit.edu.cn
  organization: The University of British Columbia
BookMark eNotkM9KAzEQh4NUsK0efIOAV7dNJvun660uti6UVoqeQ3YzgZRutiZbpDcfwWf0SVytp5nf8DE_-EZk4FqHhNxyNuGMwVTZesKznMUXZMiTOIuSnCUDMmSM8ag_8CsyCmHXJ8hmMCTHJTr0tqbzkjatxn2gpvW0USHQzisXDHpat2iMrS26jh48alt3tnXUOqoa6_D786tSATUtNkBVFVpfob-nL8p3tCwf6PZxsV5T5TTdLs4l1-TSqH3Am_85Jm-Lp9fiOVptlmUxX0UHABFHSkFqUqhEZrIKk9hUSV0JqBkXWiObKQCDPBaQ9jnRIgVQiZjxioue0VqMyd3578G370cMndy1R-_6SglZ0quBHPKemp6pD7vHkzx42yh_kpzJX6WyVyr_lMp5Wfwt4gfmOWxS
ContentType Journal Article
Copyright 2022 American Institute of Chemical Engineers.
2023 American Institute of Chemical Engineers
Copyright_xml – notice: 2022 American Institute of Chemical Engineers.
– notice: 2023 American Institute of Chemical Engineers
DBID 7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.17904
DatabaseName Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID AIC17904
Genre article
GrantInformation_xml – fundername: Beijing Institute of Technology
  funderid: 2022CX01004
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
7ST
7U5
8FD
AAMMB
ABJIA
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-p2234-aa26f62b37f7be54fb5cb32c013dde08a22fe143263dd5d3622a5381b13c01dd3
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 10:57:37 EDT 2025
Wed Jan 22 16:20:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2234-aa26f62b37f7be54fb5cb32c013dde08a22fe143263dd5d3622a5381b13c01dd3
Notes Funding information
Beijing Institute of Technology, Grant/Award Number: 2022CX01004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8230-5865
0000-0002-4956-4160
PQID 2755902929
PQPubID 7879
PageCount 15
ParticipantIDs proquest_journals_2755902929
wiley_primary_10_1002_aic_17904_AIC17904
PublicationCentury 2000
PublicationDate January 2023
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2023
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2017; 63
2015; 38
2019; 33
2017; 21
2021; 107
2022; 68
2008
2016; 51
2016; 50
2019; 249
2011; 58
2001; 45
2016; 163
2014; 20
2012; 51
2016; 55
2015; 46
2013; 19
1998; 37
2013; 15
2020; 196
2022
2021
2017; 57
2019; 355
2018
2017; 183
2020; 232
2014
2013
2021; 60
2016; 49
2014; 53
References_xml – volume: 249
  start-page: 61
  year: 2019
  end-page: 72
  article-title: Analysis of CO equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models
  publication-title: Fuel
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 50
  start-page: 206
  year: 2016
  end-page: 217
  article-title: Toward rational selection of amine solutions for PCC applications: CO absorption kinetics and absorption heat in tertiary aqueous solutions
  publication-title: Int J Greenh Gas Control
– volume: 19
  start-page: 3
  year: 2013
  end-page: 12
  article-title: Analysis and predictive correlation of mass transfer coefficient KGav of blended MDEA‐MEA for use in post‐combustion CO capture
  publication-title: Int J Greenh Gas Control
– volume: 107
  year: 2021
  article-title: Application of “coordinative effect” into tri‐solvent MEA+ BEA+ AMP blends at concentrations of 0.1+ 2+ 2∼ 0.5+ 2+ 2 mol/L with absorption, desorption and mass transfer analyses
  publication-title: Int J Greenh Gas Control
– volume: 33
  start-page: 7614
  issue: 8
  year: 2019
  end-page: 7625
  article-title: Characterization and correlations of CO absorption performance into aqueous amine blended solution of monoethanolamine (MEA) and N,N‐dimethylethanolamine (DMEA) in a packed column
  publication-title: Energy Fuel
– volume: 53
  start-page: 4413
  issue: 11
  year: 2014
  end-page: 4423
  article-title: Analysis of mass transfer performance of monoethanolamine‐based CO absorption in a packed column using artificial neural networks
  publication-title: Ind Eng Chem Res
– volume: 51
  start-page: 12058
  issue: 37
  year: 2012
  end-page: 12064
  article-title: Investigation of mass‐transfer performance for CO absorption into diethylenetriamine (DETA) in a randomly packed column
  publication-title: Ind Eng Chem Res
– volume: 58
  start-page: 5438
  issue: 12
  year: 2011
  end-page: 5450
  article-title: Advantages of radial basis function networks for dynamic system design
  publication-title: IEEE Trans Ind Electron
– volume: 68
  issue: 9
  year: 2022
  article-title: AI models for correlation of physical properties in system of 1DMA2P‐CO ‐H O
  publication-title: AIChE J
– year: 2022
  article-title: Comprehensive reaction kinetics model of CO absorption into 1‐dimethylamino‐2‐propanol solution
  publication-title: AIChE J
– volume: 355
  start-page: 369
  year: 2019
  end-page: 379
  article-title: Comprehensive solubility of N O and mass transfer studies on an effective reactive N, N‐dimethylethanolamine (DMEA) solvent for post‐combustion CO capture
  publication-title: Chem Eng J
– volume: 46
  start-page: 205
  year: 2015
  end-page: 213
  article-title: Prediction of solubility of carbon dioxide in different polymers using support vector machine algorithm
  publication-title: J Taiwan Inst Chem Eng
– year: 2021
– volume: 15
  start-page: 82
  year: 2013
  end-page: 92
  article-title: Implementing radial basis function networks for modeling CO ‐reservoir oil minimum miscibility pressure
  publication-title: J Nat gas Sci Eng
– volume: 163
  start-page: 23
  year: 2016
  end-page: 29
  article-title: Experimental study of a hybrid solvent MEA‐methanol for post‐combustion CO absorption in an absorber packed with three different packing: Sulzer BX500, Mellapale Y500, Pall rings 16 × 16
  publication-title: Sep Purif Technol
– volume: 20
  start-page: 414
  year: 2014
  end-page: 421
  article-title: Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model
  publication-title: J Nat Gas Sci Eng
– year: 2018
– volume: 183
  start-page: 117
  year: 2017
  end-page: 126
  article-title: Mass transfer performance studies of aqueous blended DEEA‐MEA solution using orthogonal array design in a packed column
  publication-title: Sep Purif Technol
– start-page: 193
  year: 2014
  end-page: 218
– volume: 63
  start-page: 329
  year: 2017
  end-page: 337
  article-title: Analyzing the experimental data of CO equilibrium absorption in the aqueous solution of DEA+ MDEA with random forest and leverage method
  publication-title: Int J Greenh Gas Control
– volume: 55
  start-page: 10788
  issue: 40
  year: 2016
  end-page: 10793
  article-title: Mass‐transfer performance of CO absorption with aqueous diethylenetriamine‐based solutions in a packed column with dixon rings
  publication-title: Ind Eng Chem Res
– volume: 57
  start-page: 143
  year: 2017
  end-page: 161
  article-title: Prediction of CO loading capacities of aqueous solutions of absorbents using different computational schemes
  publication-title: Int J Greenh Gas Control
– volume: 49
  start-page: 47
  year: 2016
  end-page: 54
  article-title: Application of ANFIS soft computing technique in modeling the CO capture with MEA, DEA, and TEA aqueous solutions
  publication-title: Int J Greenh Gas Control
– volume: 37
  start-page: 569
  issue: 2
  year: 1998
  end-page: 575
  article-title: Mass transfer coefficients and correlation for CO absorption into 2‐amino‐2‐methyl‐1‐propanol (AMP) using structured packing
  publication-title: Ind Eng Chem Res
– volume: 196
  year: 2020
  article-title: Intelligent predictive control of large‐scale solvent‐based CO capture plant using artificial neural network and particle swarm optimization
  publication-title: Energy
– year: 2008
– volume: 51
  start-page: 11
  year: 2016
  end-page: 17
  article-title: Mass transfer performance of CO absorption into aqueous DEEA in packed columns
  publication-title: Int J Greenh Gas Control
– volume: 38
  start-page: 1435
  issue: 8
  year: 2015
  end-page: 1443
  article-title: Comparison of overall gas‐phase mass transfer coefficient for CO absorption between tertiary amines in a randomly packed column
  publication-title: Chem Eng Technol
– volume: 232
  year: 2020
  article-title: Solubility of N O, equilibrium solubility, mass transfer study and modeling of CO absorption into aqueous monoethanolamine (MEA)/1‐dimethylamino‐2‐propanol (1DMA2P) solution for post‐combustion CO capture
  publication-title: Sep Purif Technol
– volume: 21
  start-page: 162
  year: 2017
  end-page: 168
  article-title: Predicting CO capture of ionic liquids using machine learning
  publication-title: J CO2 Utiliz
– volume: 60
  start-page: 13950
  issue: 38
  year: 2021
  end-page: 13966
  article-title: Development of predictive models for activated carbon synthesis from different biomass for CO adsorption using artificial neural networks
  publication-title: Ind Eng Chem Res
– volume: 63
  start-page: 77
  year: 2017
  end-page: 85
  article-title: Thermodynamics and ANN models for predication of the equilibrium CO solubility in aqueous 3‐dimethylamino‐1‐propanol solution
  publication-title: Int J Greenh Gas Control
– year: 2013
SSID ssj0012782
Score 2.5704987
Snippet In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Absorbers
Absorption
Algorithms
Amines
Artificial neural networks
Back propagation
Carbon dioxide
Carbon sequestration
CO2 capture
Coefficients
machine learning (ML)
Mass transfer
Mathematical models
Neural networks
Parameters
Radial basis function
radial basis function neural network (RBFNN)
random forest (RF)
Title Generic AI models for mass transfer coefficient prediction in amine‐based CO2 absorber, Part II: RBFNN and RF model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17904
https://www.proquest.com/docview/2755902929
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT8IwGIAbwkkPfhtRNO_BgwcHrFs31BMSCTMRDZGEg8nSryXEMMgYF0_-BH-jv8S3HSB6Mh6WbEm3Nf182q1PCTlnWl5x5mtHKR7iAKUhHc4Yd6RIhOeHScKEWY380Au6A_9-yIYlcrNcC1P4IVYTbqZm2PbaVHAuZvVvaSgfyZrRSxkXqOsFdjjVX6mjXBo2C1M4DpcRE9ylVahB66s7f1DlOpvazqWzTV6W0Sr-KXmtzXNRk2-_jI3_jPcO2VpAJ7SKUrJLSjrdI5trKsJ9Mrf-6ZGEVgR2d5wZIM7CGNkacgu3OgM50dY4gR0VTDPzicdkK4xS4GN81Of7h-kUFbQfKWB0JpnQ2SU8YemEKLqG_m2n1wOeKuh3ipcckEHn7rnddRZbMjhT5Ajf4ZwGSUCFFyah0MxPBJPCoxJBEtvJRpNTmmhEMBrgNVPYO1KOTaorXA_DKOUdknI6SfURgSYPuHTdBJGI-bxBBRVCKallEw-EjAqpLjMnXtSrWUxDZnwzyHQVcmFTOZ4WVo648C_TGNM3tukbt6K2PTn-e9ATsmH2ky_mWKqknGdzfYrUkYszW7y-AAk41Ew
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHaThQDpRCUcPnHHroAYd47bVTxCWNGsUUAoqCxAVZ-2UpquJETnLhxCPwjH0SZtdJgJ4qDpZsaW2vZmd3frP2_hfgGzfqh-Ch8bQWMSUoDeUJzoWnZCaDMM4yLu1q5Kte1L0NL-74XQXOl2thSn2I1YSb7RluvLYd3E5In76ohoqhqlt9qfADrIUR5SkWifor8Sifxc1SK5wSZgIFf6kr1GCnq1vfcOVrOnXhpfMJ7pcVK_8q-VOfz2RdPfyj2fjemm_B5oI7sVU6ymeomHwbNl6pEe7A3ElQDxW2EnQb5EyRiBZHhNc4c3xrClRj40QnKFbhpLBfeWzL4jBHMaJH_X18snFRY_uaoZDTcSFNcYI35KCYJGfY_9np9VDkGvud8iVf4Lbza9DueotdGbwJoUToCcGiLGIyiLNYGh5mkisZMEUsSUNloykYywxRGIvommsKkEzQqOpLP6AyWge7UM3HufkK2BSRUL6fERXxUDSYZFJqrYxq0kGcUYODZeuki641TVnMreQMYV0Nvjszp5NSmCMtJZhZSvZNnX3TVtJ2J3v_X_QY1ruDq8v0Mun93oePdnv5csrlAKqzYm4OCUJm8sj52jNmSNht
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEMdHFKSqHIC-VB6lc-DQQx3itdc2iEsasDDQFEVF4lJZ-5QihBM5yYUTH4HPyCfp7DpJoaeKgyVbWtur3Z2Z377-C7DHjToQPDaB1iKlDkpbBYJzEShpZRSn1nLpdiP_6CWnV_HZNb9egqP5XphGH2Ix4OYsw_trZ-BmpO3-X9VQMVAtpy8Vv4KVmB9kbkHfcX8hHhWyNGu0wqnDTKAQznWF2mx_8eozrnxKpz685Ovwe56xZlXJTWs6kS11949m40tzvgFrM-7ETtNQ3sKSqd7B6hM1wvcw9RLUA4WdAv0BOWMkosVbwmuceL41Naqh8aITFKtwVLtZHlezOKhQ3NKnHu8fXFzU2P3JUMjxsJam_oaX1ECxKA6x_z3v9VBUGvt585MPcJWf_OqeBrNTGYIRoUQcCMESmzAZpTaVhsdWciUjpoglyVW2M8GYNURhLKFnrilAMkFeNZRhRGm0jj7CcjWszCfATCRChaElKuKxaDPJpNRaGZXRRZyxCTvz2ilnpjUuWcqd5Axh3SZ89cVcjhphjrKRYGYllW_py7fsFF1_s_X_Sb_A68vjvLwoeufb8MadLt-MuOzA8qSems_EIBO565vaH0QD1_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+AI+models+for+mass+transfer+coefficient+prediction+in+amine%E2%80%90based+CO2+absorber%2C+Part+II%3A+RBFNN+and+RF+model&rft.jtitle=AIChE+journal&rft.au=Quan%2C+Hong&rft.au=Dong%2C+Shoulong&rft.au=Zhao%2C+Dongfang&rft.au=Li%2C+Hansheng&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=69&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.17904&rft.externalDBID=10.1002%252Faic.17904&rft.externalDocID=AIC17904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon