Generic AI models for mass transfer coefficient prediction in amine‐based CO2 absorber, Part II: RBFNN and RF model
In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in d...
        Saved in:
      
    
          | Published in | AIChE journal Vol. 69; no. 1 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.01.2023
     American Institute of Chemical Engineers  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0001-1541 1547-5905  | 
| DOI | 10.1002/aic.17904 | 
Cover
| Abstract | In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in different CO2 absorption systems. To secure better applicability, extra parameters related to amine type and packing characteristics were introduced to reasonably describe mass transfer behaviors, respectively. Moreover, the generic models were proposed by considering all influencing factors of mass transfer in CO2 absorber column. Furthermore, the performance of BPNN, RBFNN, and RF models was completely compared and fully discussed in terms of AARE. All three generic models could predict mass transfer coefficient of CO2 absorber very well. It was found that the BPNN models provide the best predication with AAREs of below 5%. The developed generic model could serve as a fast and efficient tool for preliminary selection and evaluation of potential amines for CO2 absorption. The framework of generic ML model development was also clearly presented, which could provide theoretical basis and practical guidance for the implementation and application of ML models in the carbon capture field. | 
    
|---|---|
| AbstractList | In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass transfer coefficient in amine‐based CO2 absorber. The models with operating parameters as input gave quite different prediction performance in different CO2 absorption systems. To secure better applicability, extra parameters related to amine type and packing characteristics were introduced to reasonably describe mass transfer behaviors, respectively. Moreover, the generic models were proposed by considering all influencing factors of mass transfer in CO2 absorber column. Furthermore, the performance of BPNN, RBFNN, and RF models was completely compared and fully discussed in terms of AARE. All three generic models could predict mass transfer coefficient of CO2 absorber very well. It was found that the BPNN models provide the best predication with AAREs of below 5%. The developed generic model could serve as a fast and efficient tool for preliminary selection and evaluation of potential amines for CO2 absorption. The framework of generic ML model development was also clearly presented, which could provide theoretical basis and practical guidance for the implementation and application of ML models in the carbon capture field. | 
    
| Author | Quan, Hong Geng, Junming Dong, Shoulong Liu, Helei Zhao, Dongfang Li, Hansheng  | 
    
| Author_xml | – sequence: 1 givenname: Hong surname: Quan fullname: Quan, Hong organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 2 givenname: Shoulong orcidid: 0000-0002-4956-4160 surname: Dong fullname: Dong, Shoulong organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 3 givenname: Dongfang surname: Zhao fullname: Zhao, Dongfang organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 4 givenname: Hansheng surname: Li fullname: Li, Hansheng organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 5 givenname: Junming surname: Geng fullname: Geng, Junming organization: School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 6 givenname: Helei orcidid: 0000-0002-8230-5865 surname: Liu fullname: Liu, Helei email: lhl0925@hotmail.com, hl_liu@bit.edu.cn organization: The University of British Columbia  | 
    
| BookMark | eNotkM9KAzEQh4NUsK0efIOAV7dNJvun660uti6UVoqeQ3YzgZRutiZbpDcfwWf0SVytp5nf8DE_-EZk4FqHhNxyNuGMwVTZesKznMUXZMiTOIuSnCUDMmSM8ag_8CsyCmHXJ8hmMCTHJTr0tqbzkjatxn2gpvW0USHQzisXDHpat2iMrS26jh48alt3tnXUOqoa6_D786tSATUtNkBVFVpfob-nL8p3tCwf6PZxsV5T5TTdLs4l1-TSqH3Am_85Jm-Lp9fiOVptlmUxX0UHABFHSkFqUqhEZrIKk9hUSV0JqBkXWiObKQCDPBaQ9jnRIgVQiZjxioue0VqMyd3578G370cMndy1R-_6SglZ0quBHPKemp6pD7vHkzx42yh_kpzJX6WyVyr_lMp5Wfwt4gfmOWxS | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 American Institute of Chemical Engineers. 2023 American Institute of Chemical Engineers  | 
    
| Copyright_xml | – notice: 2022 American Institute of Chemical Engineers. – notice: 2023 American Institute of Chemical Engineers  | 
    
| DBID | 7ST 7U5 8FD C1K L7M SOI  | 
    
| DOI | 10.1002/aic.17904 | 
    
| DatabaseName | Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts  | 
    
| DatabaseTitle | Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1547-5905 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | AIC17904 | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Beijing Institute of Technology funderid: 2022CX01004  | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 7ST 7U5 8FD AAMMB ABJIA ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY C1K L7M SOI  | 
    
| ID | FETCH-LOGICAL-p2234-aa26f62b37f7be54fb5cb32c013dde08a22fe143263dd5d3622a5381b13c01dd3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0001-1541 | 
    
| IngestDate | Fri Jul 25 10:57:37 EDT 2025 Wed Jan 22 16:20:22 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-p2234-aa26f62b37f7be54fb5cb32c013dde08a22fe143263dd5d3622a5381b13c01dd3 | 
    
| Notes | Funding information Beijing Institute of Technology, Grant/Award Number: 2022CX01004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8230-5865 0000-0002-4956-4160  | 
    
| PQID | 2755902929 | 
    
| PQPubID | 7879 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_2755902929 wiley_primary_10_1002_aic_17904_AIC17904  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2023 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: New York  | 
    
| PublicationTitle | AIChE journal | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers  | 
    
| References | 2017; 63 2015; 38 2019; 33 2017; 21 2021; 107 2022; 68 2008 2016; 51 2016; 50 2019; 249 2011; 58 2001; 45 2016; 163 2014; 20 2012; 51 2016; 55 2015; 46 2013; 19 1998; 37 2013; 15 2020; 196 2022 2021 2017; 57 2019; 355 2018 2017; 183 2020; 232 2014 2013 2021; 60 2016; 49 2014; 53  | 
    
| References_xml | – volume: 249 start-page: 61 year: 2019 end-page: 72 article-title: Analysis of CO equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models publication-title: Fuel – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 50 start-page: 206 year: 2016 end-page: 217 article-title: Toward rational selection of amine solutions for PCC applications: CO absorption kinetics and absorption heat in tertiary aqueous solutions publication-title: Int J Greenh Gas Control – volume: 19 start-page: 3 year: 2013 end-page: 12 article-title: Analysis and predictive correlation of mass transfer coefficient KGav of blended MDEA‐MEA for use in post‐combustion CO capture publication-title: Int J Greenh Gas Control – volume: 107 year: 2021 article-title: Application of “coordinative effect” into tri‐solvent MEA+ BEA+ AMP blends at concentrations of 0.1+ 2+ 2∼ 0.5+ 2+ 2 mol/L with absorption, desorption and mass transfer analyses publication-title: Int J Greenh Gas Control – volume: 33 start-page: 7614 issue: 8 year: 2019 end-page: 7625 article-title: Characterization and correlations of CO absorption performance into aqueous amine blended solution of monoethanolamine (MEA) and N,N‐dimethylethanolamine (DMEA) in a packed column publication-title: Energy Fuel – volume: 53 start-page: 4413 issue: 11 year: 2014 end-page: 4423 article-title: Analysis of mass transfer performance of monoethanolamine‐based CO absorption in a packed column using artificial neural networks publication-title: Ind Eng Chem Res – volume: 51 start-page: 12058 issue: 37 year: 2012 end-page: 12064 article-title: Investigation of mass‐transfer performance for CO absorption into diethylenetriamine (DETA) in a randomly packed column publication-title: Ind Eng Chem Res – volume: 58 start-page: 5438 issue: 12 year: 2011 end-page: 5450 article-title: Advantages of radial basis function networks for dynamic system design publication-title: IEEE Trans Ind Electron – volume: 68 issue: 9 year: 2022 article-title: AI models for correlation of physical properties in system of 1DMA2P‐CO ‐H O publication-title: AIChE J – year: 2022 article-title: Comprehensive reaction kinetics model of CO absorption into 1‐dimethylamino‐2‐propanol solution publication-title: AIChE J – volume: 355 start-page: 369 year: 2019 end-page: 379 article-title: Comprehensive solubility of N O and mass transfer studies on an effective reactive N, N‐dimethylethanolamine (DMEA) solvent for post‐combustion CO capture publication-title: Chem Eng J – volume: 46 start-page: 205 year: 2015 end-page: 213 article-title: Prediction of solubility of carbon dioxide in different polymers using support vector machine algorithm publication-title: J Taiwan Inst Chem Eng – year: 2021 – volume: 15 start-page: 82 year: 2013 end-page: 92 article-title: Implementing radial basis function networks for modeling CO ‐reservoir oil minimum miscibility pressure publication-title: J Nat gas Sci Eng – volume: 163 start-page: 23 year: 2016 end-page: 29 article-title: Experimental study of a hybrid solvent MEA‐methanol for post‐combustion CO absorption in an absorber packed with three different packing: Sulzer BX500, Mellapale Y500, Pall rings 16 × 16 publication-title: Sep Purif Technol – volume: 20 start-page: 414 year: 2014 end-page: 421 article-title: Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model publication-title: J Nat Gas Sci Eng – year: 2018 – volume: 183 start-page: 117 year: 2017 end-page: 126 article-title: Mass transfer performance studies of aqueous blended DEEA‐MEA solution using orthogonal array design in a packed column publication-title: Sep Purif Technol – start-page: 193 year: 2014 end-page: 218 – volume: 63 start-page: 329 year: 2017 end-page: 337 article-title: Analyzing the experimental data of CO equilibrium absorption in the aqueous solution of DEA+ MDEA with random forest and leverage method publication-title: Int J Greenh Gas Control – volume: 55 start-page: 10788 issue: 40 year: 2016 end-page: 10793 article-title: Mass‐transfer performance of CO absorption with aqueous diethylenetriamine‐based solutions in a packed column with dixon rings publication-title: Ind Eng Chem Res – volume: 57 start-page: 143 year: 2017 end-page: 161 article-title: Prediction of CO loading capacities of aqueous solutions of absorbents using different computational schemes publication-title: Int J Greenh Gas Control – volume: 49 start-page: 47 year: 2016 end-page: 54 article-title: Application of ANFIS soft computing technique in modeling the CO capture with MEA, DEA, and TEA aqueous solutions publication-title: Int J Greenh Gas Control – volume: 37 start-page: 569 issue: 2 year: 1998 end-page: 575 article-title: Mass transfer coefficients and correlation for CO absorption into 2‐amino‐2‐methyl‐1‐propanol (AMP) using structured packing publication-title: Ind Eng Chem Res – volume: 196 year: 2020 article-title: Intelligent predictive control of large‐scale solvent‐based CO capture plant using artificial neural network and particle swarm optimization publication-title: Energy – year: 2008 – volume: 51 start-page: 11 year: 2016 end-page: 17 article-title: Mass transfer performance of CO absorption into aqueous DEEA in packed columns publication-title: Int J Greenh Gas Control – volume: 38 start-page: 1435 issue: 8 year: 2015 end-page: 1443 article-title: Comparison of overall gas‐phase mass transfer coefficient for CO absorption between tertiary amines in a randomly packed column publication-title: Chem Eng Technol – volume: 232 year: 2020 article-title: Solubility of N O, equilibrium solubility, mass transfer study and modeling of CO absorption into aqueous monoethanolamine (MEA)/1‐dimethylamino‐2‐propanol (1DMA2P) solution for post‐combustion CO capture publication-title: Sep Purif Technol – volume: 21 start-page: 162 year: 2017 end-page: 168 article-title: Predicting CO capture of ionic liquids using machine learning publication-title: J CO2 Utiliz – volume: 60 start-page: 13950 issue: 38 year: 2021 end-page: 13966 article-title: Development of predictive models for activated carbon synthesis from different biomass for CO adsorption using artificial neural networks publication-title: Ind Eng Chem Res – volume: 63 start-page: 77 year: 2017 end-page: 85 article-title: Thermodynamics and ANN models for predication of the equilibrium CO solubility in aqueous 3‐dimethylamino‐1‐propanol solution publication-title: Int J Greenh Gas Control – year: 2013  | 
    
| SSID | ssj0012782 | 
    
| Score | 2.5704987 | 
    
| Snippet | In this work, the radial basis function neural network (RBFNN) and random forest (RF) algorithms were employed to develop generic AI models predicting mass... | 
    
| SourceID | proquest wiley  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| SubjectTerms | Absorbers Absorption Algorithms Amines Artificial neural networks Back propagation Carbon dioxide Carbon sequestration CO2 capture Coefficients machine learning (ML) Mass transfer Mathematical models Neural networks Parameters Radial basis function radial basis function neural network (RBFNN) random forest (RF)  | 
    
| Title | Generic AI models for mass transfer coefficient prediction in amine‐based CO2 absorber, Part II: RBFNN and RF model | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17904 https://www.proquest.com/docview/2755902929  | 
    
| Volume | 69 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1547-5905 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0001-1541 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT8IwGIAbwkkPfhtRNO_BgwcHrFs31BMSCTMRDZGEg8nSryXEMMgYF0_-BH-jv8S3HSB6Mh6WbEm3Nf182q1PCTlnWl5x5mtHKR7iAKUhHc4Yd6RIhOeHScKEWY380Au6A_9-yIYlcrNcC1P4IVYTbqZm2PbaVHAuZvVvaSgfyZrRSxkXqOsFdjjVX6mjXBo2C1M4DpcRE9ylVahB66s7f1DlOpvazqWzTV6W0Sr-KXmtzXNRk2-_jI3_jPcO2VpAJ7SKUrJLSjrdI5trKsJ9Mrf-6ZGEVgR2d5wZIM7CGNkacgu3OgM50dY4gR0VTDPzicdkK4xS4GN81Of7h-kUFbQfKWB0JpnQ2SU8YemEKLqG_m2n1wOeKuh3ipcckEHn7rnddRZbMjhT5Ajf4ZwGSUCFFyah0MxPBJPCoxJBEtvJRpNTmmhEMBrgNVPYO1KOTaorXA_DKOUdknI6SfURgSYPuHTdBJGI-bxBBRVCKallEw-EjAqpLjMnXtSrWUxDZnwzyHQVcmFTOZ4WVo648C_TGNM3tukbt6K2PTn-e9ATsmH2ky_mWKqknGdzfYrUkYszW7y-AAk41Ew | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHaThQDpRCUcPnHHroAYd47bVTxCWNGsUUAoqCxAVZ-2UpquJETnLhxCPwjH0SZtdJgJ4qDpZsaW2vZmd3frP2_hfgGzfqh-Ch8bQWMSUoDeUJzoWnZCaDMM4yLu1q5Kte1L0NL-74XQXOl2thSn2I1YSb7RluvLYd3E5In76ohoqhqlt9qfADrIUR5SkWifor8Sifxc1SK5wSZgIFf6kr1GCnq1vfcOVrOnXhpfMJ7pcVK_8q-VOfz2RdPfyj2fjemm_B5oI7sVU6ymeomHwbNl6pEe7A3ElQDxW2EnQb5EyRiBZHhNc4c3xrClRj40QnKFbhpLBfeWzL4jBHMaJH_X18snFRY_uaoZDTcSFNcYI35KCYJGfY_9np9VDkGvud8iVf4Lbza9DueotdGbwJoUToCcGiLGIyiLNYGh5mkisZMEUsSUNloykYywxRGIvommsKkEzQqOpLP6AyWge7UM3HufkK2BSRUL6fERXxUDSYZFJqrYxq0kGcUYODZeuki641TVnMreQMYV0Nvjszp5NSmCMtJZhZSvZNnX3TVtJ2J3v_X_QY1ruDq8v0Mun93oePdnv5csrlAKqzYm4OCUJm8sj52jNmSNht | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEMdHFKSqHIC-VB6lc-DQQx3itdc2iEsasDDQFEVF4lJZ-5QihBM5yYUTH4HPyCfp7DpJoaeKgyVbWtur3Z2Z377-C7DHjToQPDaB1iKlDkpbBYJzEShpZRSn1nLpdiP_6CWnV_HZNb9egqP5XphGH2Ix4OYsw_trZ-BmpO3-X9VQMVAtpy8Vv4KVmB9kbkHfcX8hHhWyNGu0wqnDTKAQznWF2mx_8eozrnxKpz685Ovwe56xZlXJTWs6kS11949m40tzvgFrM-7ETtNQ3sKSqd7B6hM1wvcw9RLUA4WdAv0BOWMkosVbwmuceL41Naqh8aITFKtwVLtZHlezOKhQ3NKnHu8fXFzU2P3JUMjxsJam_oaX1ECxKA6x_z3v9VBUGvt585MPcJWf_OqeBrNTGYIRoUQcCMESmzAZpTaVhsdWciUjpoglyVW2M8GYNURhLKFnrilAMkFeNZRhRGm0jj7CcjWszCfATCRChaElKuKxaDPJpNRaGZXRRZyxCTvz2ilnpjUuWcqd5Axh3SZ89cVcjhphjrKRYGYllW_py7fsFF1_s_X_Sb_A68vjvLwoeufb8MadLt-MuOzA8qSems_EIBO565vaH0QD1_E | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+AI+models+for+mass+transfer+coefficient+prediction+in+amine%E2%80%90based+CO2+absorber%2C+Part+II%3A+RBFNN+and+RF+model&rft.jtitle=AIChE+journal&rft.au=Quan%2C+Hong&rft.au=Dong%2C+Shoulong&rft.au=Zhao%2C+Dongfang&rft.au=Li%2C+Hansheng&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=69&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.17904&rft.externalDBID=10.1002%252Faic.17904&rft.externalDocID=AIC17904 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |