Towards a Methodology to Search for Near-Optimal Representations in Classification Problems

This paper provides a first step towards a methodology that allows the search for near-optimal representations in classification problems by combining feature transformations from an initial family of basis functions. The original representation for the problem data may not be the most appropriate,...

Full description

Saved in:
Bibliographic Details
Published inArtificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach pp. 291 - 299
Main Authors del Valle, Manuel, Sánchez, Beatriz, Lago-Fernández, Luis F., Corbacho, Fernando J.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783540263197
3540263195
ISSN0302-9743
1611-3349
DOI10.1007/11499305_30

Cover

Abstract This paper provides a first step towards a methodology that allows the search for near-optimal representations in classification problems by combining feature transformations from an initial family of basis functions. The original representation for the problem data may not be the most appropriate, and therefore it might be necessary to search for a new representation space that is closer to the structure of the problem to be solved. The outcome of this search is critical for the successful solution of the problem. For instance, if the objective function has certain global statistical properties, such as periodicity, it will be hard for methods based on local pattern information to capture the underlying structure and, hence, afford generalization capabilities. Conversely, once this optimal representation is found, most of the problems may be solved by a linear method. Hence, the key is to find the proper representation. As a proof of concept we present a particular problem where the class distributions have a very intricate overlap on the space of original attributes. For this problem, the proposed algorithm finds a representation based on the trigonometric basis that provides a solution where some of the classical learning methods, e.g. multilayer perceptrons and decision trees, fail. The methodology is composed by a discrete search within the space of basis functions and a linear mapping performed by a Fisher discriminant. We play special emphasis on the first part. Finding the optimal combination of basis functions is a difficult problem because of its nongradient nature and the large number of possible combinations. We rely on the global search capabilities of a genetic algorithm to scan the space of function compositions.
AbstractList This paper provides a first step towards a methodology that allows the search for near-optimal representations in classification problems by combining feature transformations from an initial family of basis functions. The original representation for the problem data may not be the most appropriate, and therefore it might be necessary to search for a new representation space that is closer to the structure of the problem to be solved. The outcome of this search is critical for the successful solution of the problem. For instance, if the objective function has certain global statistical properties, such as periodicity, it will be hard for methods based on local pattern information to capture the underlying structure and, hence, afford generalization capabilities. Conversely, once this optimal representation is found, most of the problems may be solved by a linear method. Hence, the key is to find the proper representation. As a proof of concept we present a particular problem where the class distributions have a very intricate overlap on the space of original attributes. For this problem, the proposed algorithm finds a representation based on the trigonometric basis that provides a solution where some of the classical learning methods, e.g. multilayer perceptrons and decision trees, fail. The methodology is composed by a discrete search within the space of basis functions and a linear mapping performed by a Fisher discriminant. We play special emphasis on the first part. Finding the optimal combination of basis functions is a difficult problem because of its nongradient nature and the large number of possible combinations. We rely on the global search capabilities of a genetic algorithm to scan the space of function compositions.
Author Lago-Fernández, Luis F.
Sánchez, Beatriz
Corbacho, Fernando J.
del Valle, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  surname: del Valle
  fullname: del Valle, Manuel
  organization: Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
– sequence: 2
  givenname: Beatriz
  surname: Sánchez
  fullname: Sánchez, Beatriz
  organization: Telefónica Investigación y Desarrollo, Madrid, Spain
– sequence: 3
  givenname: Luis F.
  surname: Lago-Fernández
  fullname: Lago-Fernández, Luis F.
  organization: Cognodata Consulting, Madrid, Spain
– sequence: 4
  givenname: Fernando J.
  surname: Corbacho
  fullname: Corbacho, Fernando J.
  organization: Cognodata Consulting, Madrid, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17010822$$DView record in Pascal Francis
BookMark eNpNUMtOwzAQNFAkSumJH_CFA4fArtdt4iOqeEmFIignDpGd2G0gjSM7EurfEyhC7GVWM6PRaI7ZoPGNZewU4QIB0ktEqRTBJCfYY2OVZjSRQDhNSeyzIU4REyKpDv40MSVU6YANgUAkKpV0xMYxvkN_cjKVEobsbek_dSgj1_zBdmtf-tqvtrzz_MXqUKy584E_9m-yaLtqo2v-bNtgo2063VW-ibxq-KzWMVauKn4o_hS8qe0mnrBDp-tox784Yq8318vZXTJf3N7PruZJK1B1SeEyIKHQldiDoUKhkgpAZ5IKEGRSkxkFlgpBqsQ0AyyNBgWSnDNU0oid7XJbHQtdu6Cboop5G_q-YZtjCgiZEL3vfOeLvdSsbMiN9x8xR8i_B87_DUxf6XFpEw
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2005
2005 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2005
– notice: 2005 INIST-CNRS
DBID IQODW
DOI 10.1007/11499305_30
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
Applied Sciences
EISBN 9783540316732
3540316736
EISSN 1611-3349
Editor Mira, José
Álvarez, José R.
Editor_xml – sequence: 1
  givenname: José
  surname: Mira
  fullname: Mira, José
  email: jmira@dia.uned.es
– sequence: 2
  givenname: José R.
  surname: Álvarez
  fullname: Álvarez, José R.
  email: jras@dia.uned.es
EndPage 299
ExternalDocumentID 17010822
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
IQODW
RIG
ID FETCH-LOGICAL-p219t-cf803291fd1329b3c9194900a843c023b7b8b90e3c239d17801dba09043ffb3d3
ISBN 9783540263197
3540263195
ISSN 0302-9743
IngestDate Wed Apr 02 07:24:59 EDT 2025
Wed Sep 17 03:39:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Knowledge engineering
Gradient
Statistical analysis
Probabilistic approach
Periodicity
Cognition
Decision tree
Remote teaching
Genetic algorithm
Classification
Multilayer perceptrons
Objective function
Internet
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Artificial intelligence and knowledge engineering applications : a bioinspired approach (Las Palmas, 15-18 June 2005. Part II)
MergedId FETCHMERGED-LOGICAL-p219t-cf803291fd1329b3c9194900a843c023b7b8b90e3c239d17801dba09043ffb3d3
PageCount 9
ParticipantIDs pascalfrancis_primary_17010822
springer_books_10_1007_11499305_30
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle First International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005, Las Palmas, Canary Islands, Spain, June 15-18, 2005, Proceedings, Part II
PublicationTitle Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach
PublicationYear 2005
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: New York University, NY, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0000456440
ssj0002792
Score 1.7561496
Snippet This paper provides a first step towards a methodology that allows the search for near-optimal representations in classification problems by combining feature...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 291
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Fisher Linear Discriminant
General Genetic Algorithm
Genetic Algorithm
Supervise Learning Algorithm
Trigonometric Basis
Title Towards a Methodology to Search for Near-Optimal Representations in Classification Problems
URI http://link.springer.com/10.1007/11499305_30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2lQUiIA9CCKB_VCiEulqN11vHHgUOKWlUhDUi0VSUOltdeo0jUjhrnQH80v4GZnbVrpwgBF8eynNjamczOvp15j7G3IkCSFE-5gR8o14-CwE2ln7lS6EyHOs61wG7k00Vwcu7PLieXg8HPTtXSplaj7Oa3fSX_Y1W4BnbFLtl_sGz7o3ABzsG-cAQLw3Er-e3DrJYz1pT5EFlGh1cTkfCPDVLW5RukjNNCdNSRfrisliXutUPaObXs4o0Jcv3duUClFWrpKTe6Lcb4YrbXvRIMbvDnQ41E_zdtcU_6rXIRoLa3WZR6vlmuneNRu-tRXSuUajHpM6HZlTMb9XzY1PSundQ5NULXxBcF2TIVSZsSyQWcup8g8F0ZmYDVbTsVlcgb1U8cKPL0zySgQysJNJJev5_bfZRFVWv6jpW6aCJfDxqZbEEjDTTq_IE5zCJf4wBCUdiJvRImClhqUezVNDcEyPgoiWG1ifckNWZThzFpPd2ZlagQBVaekAyKSSLFDtuB5w7ZvenRbH7RYoKG2we5d2wmgeSOtAtGL2N7k8zLTu63sB29vG0-xb7QzpOw1jddw9-9IJ2WOxv-Jo86e8weYm8Nx6YXGN4nbKDLXbY3LdO6uvrB33FTj2ysvMseNVbg1gp77Kt1CJ7yjkPwuuLkEBwcgncdgm85BF-WvO8QvHGIp-z8-Ojsw4lr1UHcFcyytZsVkZAw_kXuwYeSWezFfixEGvkyg0xUhSpSsdAyG8s490JIxXKVilj4siiUzOUzNiyrUj9nPPPDQEVFFmUy9kOhUjCDh7qqngrHXj7ZZwe9QUxWxASToJgBSibsszfNqCYYENZJwwbeMcWLv7npJXtw68mv2LC-3ujXkPbW6sB6yy-KWakK
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Artificial+Intelligence+and+Knowledge+Engineering+Applications%3A+A+Bioinspired+Approach&rft.au=del+Valle%2C+Manuel&rft.au=S%C3%A1nchez%2C+Beatriz&rft.au=Lago-Fern%C3%A1ndez%2C+Luis+F.&rft.au=Corbacho%2C+Fernando+J.&rft.atitle=Towards+a+Methodology+to+Search+for+Near-Optimal+Representations+in+Classification+Problems&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540263197&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=291&rft.epage=299&rft_id=info:doi/10.1007%2F11499305_30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon