State‐of‐charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries
Summary To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is co...
Saved in:
| Published in | International journal of energy research Vol. 42; no. 8; pp. 2710 - 2727 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
John Wiley & Sons, Inc
25.06.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-907X 1099-114X |
| DOI | 10.1002/er.4060 |
Cover
| Abstract | Summary
To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions.
A battery thermal evolution model is formulated and exploited for OCV prediction and parameter identification. An off‐line approach using the differential evolution algorithm and an on‐line approach based on an LMS filter are proposed for ECM parameterization. The RLSF and AEKF algorithms are used to estimate the SOC. |
|---|---|
| AbstractList | Summary
To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions.
A battery thermal evolution model is formulated and exploited for OCV prediction and parameter identification. An off‐line approach using the differential evolution algorithm and an on‐line approach based on an LMS filter are proposed for ECM parameterization. The RLSF and AEKF algorithms are used to estimate the SOC. To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions. |
| Author | Bai, Kun Ma, Jiachen Xie, Jiale |
| Author_xml | – sequence: 1 givenname: Jiale orcidid: 0000-0001-6459-087X surname: Xie fullname: Xie, Jiale organization: Harbin Institute of Technology – sequence: 2 givenname: Jiachen surname: Ma fullname: Ma, Jiachen email: hitwhrobot@126.com organization: Harbin Institute of Technology – sequence: 3 givenname: Kun surname: Bai fullname: Bai, Kun organization: Maintenance Branch |
| BookMark | eNotkM9OAjEQxhuDiYDGV2jiURbbbdllj4aAmpBg_JNwa0qZQsnSrm1Xw41H8Bl9Ekv0Mt9hvpn55tdDHessIHRNyZASkt-BH3JSkDPUpaSqMkr5soO6hBUsq0i5vEC9EHaEpB4tu-j4GmWEn-O306morfQbwBCi2cvofMDK2WDW4I3d4Aj7BryMrU8WrUHFAd4eQgQPwQTcuAg2GlkPsLRrHLfg97LG8OnqNhpnsXYez80Mnhccr2RMcwbCJTrXsg5w9a999D6bvk0es_ni4WlyP8-anFYkK0ZKgZK55GRFmOZrRnRV6JRCV2OuGQcGnMFYcq6kLlaFplTxai1LLjkUjPXRzd_exruPNn0odq71Np0UORmNaFlyXibX7Z_ry9RwEI1PHPxBUCJObAV4cWIrpi8nYb9-7HSh |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
| DBID | 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.4060 |
| DatabaseName | Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 2727 |
| ExternalDocumentID | ER4060 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEIMD AENEX AFBPY AFGKR AFRAH AFZJQ AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 G-S G.N GNP GODZA H.T H.X HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-p2190-65cceca2a40b03f4d30f96fffef984f34e3e43e8a44caf6b6f11c49da74a4e633 |
| IEDL.DBID | DR2 |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 09:55:27 EDT 2025 Thu Sep 25 07:35:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p2190-65cceca2a40b03f4d30f96fffef984f34e3e43e8a44caf6b6f11c49da74a4e633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6459-087X |
| PQID | 2055177447 |
| PQPubID | 996365 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2055177447 wiley_primary_10_1002_er_4060_ER4060 |
| PublicationCentury | 2000 |
| PublicationDate | 25 June 2018 |
| PublicationDateYYYYMMDD | 2018-06-25 |
| PublicationDate_xml | – month: 06 year: 2018 text: 25 June 2018 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2015; 57 2018; 142 2015; 283 2015; 281 2016; 328 2006; 153 2013; 240 2012; 39 2011; 196 2014; 253 2016; 180 2014; 258 2016; 162 2014; 256 2014; 113 2004; 134 2018; 259 2004; 130 2013; 238 2013; 235 2017 2014; 121 2017; 365 2008; 175 2014; 269 2014; 247 1972; 17 1985; 132 2016; 172 |
| References_xml | – volume: 153 start-page: A2013 issue: 11 year: 2006 end-page: A2022 article-title: Modeling battery behavior for accurate state‐of‐charge indication publication-title: J Electrochem Soc – volume: 238 start-page: 413 year: 2013 end-page: 421 article-title: State of charge estimation for Lithium ion cells: design of experiments, nonlinear identification and fuzzy observer design publication-title: J Power Sources – volume: 132 start-page: 5 issue: 1 year: 1985 end-page: 12 article-title: General energy balance for battery systems publication-title: J Electrochem Soc – volume: 196 start-page: 331 issue: 1 year: 2011 end-page: 336 article-title: Dynamic electric behavior and open‐circuit‐voltage modeling of LiFePO 4‐based lithium ion secondary batteries publication-title: J Power Sources – volume: 57 start-page: 177 issue: 1 year: 2015 end-page: 187 article-title: Understanding the impact of electric vehicle driving experience on range anxiety publication-title: Hum Factors – volume: 247 start-page: 156 year: 2014 end-page: 162 article-title: Sequential Monte Carlo filter for state estimation of LiFePO 4 batteries based on an online updated model publication-title: J Power Sources – volume: 39 start-page: 310 issue: 1 year: 2012 end-page: 318 article-title: Online model‐based estimation of state‐of‐charge and open‐circuit voltage of lithium‐ion batteries in electric vehicles publication-title: Energy – volume: 180 start-page: 424 year: 2016 end-page: 434 article-title: Co‐estimation of state‐of‐charge, capacity and resistance for lithium‐ion batteries based on a high‐fidelity electrochemical model publication-title: Appl Energy – volume: 175 start-page: 635 issue: 1 year: 2008 end-page: 643 article-title: Development of a voltage‐behavior model for NiMH batteries using an impedance‐based modeling concept publication-title: J Power Sources – volume: 17 start-page: 693 issue: 5 year: 1972 end-page: 698 article-title: Approaches to adaptive filtering publication-title: IEEE Trans Autom Control – volume: 142 start-page: 678 year: 2018 end-page: 688 article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique publication-title: Energy – volume: 121 start-page: 20 year: 2014 end-page: 27 article-title: A new neural network model for the state‐of‐charge estimation in the battery degradation process publication-title: Appl Energy – volume: 172 start-page: 169 year: 2016 end-page: 179 article-title: Online state of charge and model parameter co‐estimation based on a novel multi‐timescale estimator for vanadium redox flow battery publication-title: Appl Energy – volume: 365 start-page: 308 year: 2017 end-page: 319 article-title: On‐board adaptive model for state of charge estimation of lithium‐ion batteries based on Kalman filter with proportional integral‐based error adjustment publication-title: J Power Sources – year: 2017 article-title: A wavelet transform‐adaptive unscented Kalman filter approach for state of charge estimation of LiFePo4 battery publication-title: Int J Energy Res – volume: 130 start-page: 266 issue: 1 year: 2004 end-page: 274 article-title: Rapid test and non‐linear model characterisation of solid‐state lithium‐ion batteries publication-title: J Power Sources – volume: 196 start-page: 4826 issue: 10 year: 2011 end-page: 4831 article-title: Equivalent circuit model parameters of a high‐power li‐ion battery: thermal and state of charge effects publication-title: J Power Sources – volume: 235 start-page: 148 year: 2013 end-page: 158 article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency publication-title: J Power Sources – volume: 259 start-page: 566 year: 2018 end-page: 577 article-title: A comparative study of different equivalent circuit models for estimating state‐of‐charge of lithium‐ion batteries publication-title: Electrochim Acta – volume: 240 start-page: 184 year: 2013 end-page: 192 article-title: Online battery state of health estimation based on genetic algorithm for electric and hybrid vehicle applications publication-title: J Power Sources – volume: 134 start-page: 277 issue: 2 year: 2004 end-page: 292 article-title: Extended Kalman filtering for battery management systems of LiPB‐based HEV battery packs: part 3. State and parameter estimation publication-title: J Power Sources – volume: 328 start-page: 615 year: 2016 end-page: 626 article-title: Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium‐ion batteries publication-title: J Power Sources – volume: 162 start-page: 163 year: 2016 end-page: 171 article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method publication-title: Appl Energy – volume: 269 start-page: 682 year: 2014 end-page: 693 article-title: State‐of‐charge estimation for battery management system using optimized support vector machine for regression publication-title: J Power Sources – volume: 281 start-page: 114 year: 2015 end-page: 130 article-title: Critical review of on‐board capacity estimation techniques for lithium‐ion batteries in electric and hybrid electric vehicles publication-title: J Power Sources – year: 2017 – volume: 258 start-page: 321 year: 2014 end-page: 339 article-title: Critical review of the methods for monitoring of lithium‐ion batteries in electric and hybrid vehicles publication-title: J Power Sources – volume: 113 start-page: 106 year: 2014 end-page: 115 article-title: State of charge estimation of lithium‐ion batteries using the open‐circuit voltage at various ambient temperatures publication-title: Appl Energy – volume: 283 start-page: 24 year: 2015 end-page: 36 article-title: An integrated approach for real‐time model‐based state‐of‐charge estimation of lithium‐ion batteries publication-title: J Power Sources – volume: 256 start-page: 410 year: 2014 end-page: 423 article-title: A survey of mathematics‐based equivalent‐circuit and electrochemical battery models for hybrid and electric vehicle simulation publication-title: J Power Sources – volume: 253 start-page: 412 year: 2014 end-page: 418 article-title: Development of a voltage relaxation model for rapid open‐circuit voltage prediction in lithium‐ion batteries publication-title: J Power Sources |
| SSID | ssj0009917 |
| Score | 2.373564 |
| Snippet | Summary
To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are... To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | 2710 |
| SubjectTerms | adaptive extended Kalman filter Adaptive filters Algorithms Batteries Computer simulation differential evolution algorithm Electric potential Equivalent circuits Estimators Evolutionary algorithms Exploitation Extended Kalman filter Heat generation Hysteresis hysteresis model Hysteresis models Internet Kalman filters Lithium-ion batteries Mathematical models Parameter estimation Parameter identification Parameters State of charge Temperature effects Thermal evolution thermal evolution model Tracking Voltage |
| Title | State‐of‐charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4060 https://www.proquest.com/docview/2055177447 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: ADMLS dateStart: 20050610 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-907X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1PT8IwGMYbw0kP_jeiaHrgyGBbu247GgMhxqghkhAvS9u1kSiDsOHBEx_Bz-gn8W03BD0ZL9tlTZv27fo829tfEWqCo3A18TwniNzQoSmRjpCEOr7vgtigmgtuaZ93rD-kN6NgtHHUV8mH-P7gZmaGfV-bCc5F3llDQ9W8DYuRceseYdZMDdbgKFA94eovJdi_Ubld1pTsVOV-KMpNXWoXlt4eelo1qcwneWkvCtGW779ojf9q8z7areQmvirj4wBtqewQ7WxACI_Q0urNz-XHVMPFkpMUNuyNifHjOZbVkZ7wMDYgq4rCjMtMkBZ-NixoMO3jHM-mhUk-4q8tzLMUG205gdrVWxXfGBQyvh331MM9xcKSPcGoH6Nhr_t43XeqcxmcmW92nrNASiW5z6krXKJhgF0dMw216jiimlBFFCUq4pRKrplg2vMkjVMeUk4VI-QE1bJppk4RJjHhoU8Jg4L2HOwwEmDvacpBR8U8qKPGapSSanLlie-CzDORFNZR03Z3MivRHEkJYfYTNU9MRyfdgbmd_e2xc7QNcigyiWB-0EC1Yr5QFyA5CnFpo-sLlK7XHg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtBAMwcEdcCnjoSNo0PrmNCFEVKBchKlViiBzHFhX0orYwMPUReEaehHOcFAoTYkkWW7Z8if_fOf7MWBkdhWtEreb4kRs6kAnlpEqA43kuig0wMpWW9nkdNFpw0fbbRVQlnYXJ-RBfG240M-z3miY4bUhXv6mheljB1Qjt-gIE6FJIEN19o6NQ94TT_5RoANv5gVnKWi0y_tCUs8rULi31VfYwrVQeUfJUeRmnFfX2i9f4v1qvsZVCcfKTfIissznd22DLMxzCTTaxkvNj8t43-LDwJM0Jv9ElSz7iqrjVExNzYlkVIGaeB4Mc80fCQaNv74z4oD-m-CP5fMxlL-MkL7tYun4thjhHkcybnbq-vQGeWrgnevUt1qqf3Z82nOJqBmfg0eHzwFdKK-lJcFNXGOxj18SBwVJNHIERoIUGoSMJoKQJ0sDUagriTIYgQQdCbLP5Xr-ndxgXsZChByLAjPYq7DBK0eFDJlFKxdLfZaVpNyXF_BolnotKjwZTuMvKtr2TQU7nSHIOs5foYUINnZzd0Wvvb8mO2GLj_qqZNM-vL_fZEqqjiOLCPL_E5sfDF32ACmScHtqh9gkLBNs_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsQwFIaDKIguvIvjNQuX07FtTm9LUYs3dBgcGHAR0jRBUTtlLi5c-Qg-o0_iSdrxthI37aYhITlp_r89-ULIPjoKVzPPc4LYjRzImXQyycDxfRfFBmiRCUv7vApPu3DeC3p1VqXZC1PxIT4_uJmZYd_XZoKrMtcHX9RQNWjhaoR2fQaCJDbpfMedL3QU6p5o8p8SDWCv2jBrih7UBX9oyu_K1C4t6SK5nTSqyih5aI1HWUu-_OI1_q_VS2ShVpz0sAqRZTKlihUy_41DuEpereR8f33ra7xYeJKiBr_xZCz5kMr6VE98mBqWVQ1iplUySJPeGRw0-vb7IS37I5N_JB6bVBQ5NfLyCWtXz3WIUxTJ9PI-Ve1roJmFe6JXXyPd9OTm6NSpj2ZwSt9sPg8DKZUUvgA3c5nGMXZ1EmqsVScxaAaKKWAqFgBS6DALtedJSHIRgQAVMrZOpot-oTYIZQkTkQ8sxIL2KOwoztDhQy5QSiUiaJDtyTDxen4Nue-i0jPBFDXIvu1vXlZ0Dl5xmH2uBtx0ND_pmNvm3x7bI7Pt45Rfnl1dbJE5FEexSQvzg20yPRqM1Q4KkFG2ayPtA-YN2sM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90charge+estimators+considering+temperature+effect%2C+hysteresis+potential%2C+and+thermal+evolution+for+LiFePO4+batteries&rft.jtitle=International+journal+of+energy+research&rft.au=Xie%2C+Jiale&rft.au=Ma%2C+Jiachen&rft.au=Bai%2C+Kun&rft.date=2018-06-25&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=42&rft.issue=8&rft.spage=2710&rft.epage=2727&rft_id=info:doi/10.1002%2Fer.4060&rft.externalDBID=10.1002%252Fer.4060&rft.externalDocID=ER4060 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |