State‐of‐charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries

Summary To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 42; no. 8; pp. 2710 - 2727
Main Authors Xie, Jiale, Ma, Jiachen, Bai, Kun
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 25.06.2018
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.4060

Cover

Abstract Summary To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions. A battery thermal evolution model is formulated and exploited for OCV prediction and parameter identification. An off‐line approach using the differential evolution algorithm and an on‐line approach based on an LMS filter are proposed for ECM parameterization. The RLSF and AEKF algorithms are used to estimate the SOC.
AbstractList Summary To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions. A battery thermal evolution model is formulated and exploited for OCV prediction and parameter identification. An off‐line approach using the differential evolution algorithm and an on‐line approach based on an LMS filter are proposed for ECM parameterization. The RLSF and AEKF algorithms are used to estimate the SOC.
To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately modeled. Open‐circuit voltage is regarded as the sum of electromotive force and hysteresis potential (Vh), where electromotive force is constructed as the function of SoC and temperature and Vh is reproduced with a geometrical model. By simulating battery heat generation and dissipation, a thermal evolution model is established and exploited for open‐circuit voltage and parameter identification. Then, on the basis of a second‐order equivalent circuit model, 2 SoC estimation schemes are proposed: One scheme uses the recursive least square with forgetting factor algorithm and off‐line equivalent circuit model parameters derived by the differential evolution algorithm; the other scheme resorts to the adaptive extended Kalman filter (EKF) and online tuned parameters. Experiments validate the effectiveness of the hysteresis model and the thermal evolution model. In contrast to a joint EKF estimator, experimental results under different temperatures and initial states suggest that both the proposed estimators are superior to the joint EKF estimator. Benefiting from the online updated parameters, the adaptive EKF estimator behaves best for giving consistent SoC‐tracking performance under different conditions.
Author Bai, Kun
Ma, Jiachen
Xie, Jiale
Author_xml – sequence: 1
  givenname: Jiale
  orcidid: 0000-0001-6459-087X
  surname: Xie
  fullname: Xie, Jiale
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Jiachen
  surname: Ma
  fullname: Ma, Jiachen
  email: hitwhrobot@126.com
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Kun
  surname: Bai
  fullname: Bai, Kun
  organization: Maintenance Branch
BookMark eNotkM9OAjEQxhuDiYDGV2jiURbbbdllj4aAmpBg_JNwa0qZQsnSrm1Xw41H8Bl9Ekv0Mt9hvpn55tdDHessIHRNyZASkt-BH3JSkDPUpaSqMkr5soO6hBUsq0i5vEC9EHaEpB4tu-j4GmWEn-O306morfQbwBCi2cvofMDK2WDW4I3d4Aj7BryMrU8WrUHFAd4eQgQPwQTcuAg2GlkPsLRrHLfg97LG8OnqNhpnsXYez80Mnhccr2RMcwbCJTrXsg5w9a999D6bvk0es_ni4WlyP8-anFYkK0ZKgZK55GRFmOZrRnRV6JRCV2OuGQcGnMFYcq6kLlaFplTxai1LLjkUjPXRzd_exruPNn0odq71Np0UORmNaFlyXibX7Z_ry9RwEI1PHPxBUCJObAV4cWIrpi8nYb9-7HSh
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID 7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.4060
DatabaseName Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 2727
ExternalDocumentID ER4060
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEIMD
AENEX
AFBPY
AFGKR
AFRAH
AFZJQ
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-p2190-65cceca2a40b03f4d30f96fffef984f34e3e43e8a44caf6b6f11c49da74a4e633
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 09:55:27 EDT 2025
Thu Sep 25 07:35:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2190-65cceca2a40b03f4d30f96fffef984f34e3e43e8a44caf6b6f11c49da74a4e633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6459-087X
PQID 2055177447
PQPubID 996365
PageCount 18
ParticipantIDs proquest_journals_2055177447
wiley_primary_10_1002_er_4060_ER4060
PublicationCentury 2000
PublicationDate 25 June 2018
PublicationDateYYYYMMDD 2018-06-25
PublicationDate_xml – month: 06
  year: 2018
  text: 25 June 2018
  day: 25
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 57
2018; 142
2015; 283
2015; 281
2016; 328
2006; 153
2013; 240
2012; 39
2011; 196
2014; 253
2016; 180
2014; 258
2016; 162
2014; 256
2014; 113
2004; 134
2018; 259
2004; 130
2013; 238
2013; 235
2017
2014; 121
2017; 365
2008; 175
2014; 269
2014; 247
1972; 17
1985; 132
2016; 172
References_xml – volume: 153
  start-page: A2013
  issue: 11
  year: 2006
  end-page: A2022
  article-title: Modeling battery behavior for accurate state‐of‐charge indication
  publication-title: J Electrochem Soc
– volume: 238
  start-page: 413
  year: 2013
  end-page: 421
  article-title: State of charge estimation for Lithium ion cells: design of experiments, nonlinear identification and fuzzy observer design
  publication-title: J Power Sources
– volume: 132
  start-page: 5
  issue: 1
  year: 1985
  end-page: 12
  article-title: General energy balance for battery systems
  publication-title: J Electrochem Soc
– volume: 196
  start-page: 331
  issue: 1
  year: 2011
  end-page: 336
  article-title: Dynamic electric behavior and open‐circuit‐voltage modeling of LiFePO 4‐based lithium ion secondary batteries
  publication-title: J Power Sources
– volume: 57
  start-page: 177
  issue: 1
  year: 2015
  end-page: 187
  article-title: Understanding the impact of electric vehicle driving experience on range anxiety
  publication-title: Hum Factors
– volume: 247
  start-page: 156
  year: 2014
  end-page: 162
  article-title: Sequential Monte Carlo filter for state estimation of LiFePO 4 batteries based on an online updated model
  publication-title: J Power Sources
– volume: 39
  start-page: 310
  issue: 1
  year: 2012
  end-page: 318
  article-title: Online model‐based estimation of state‐of‐charge and open‐circuit voltage of lithium‐ion batteries in electric vehicles
  publication-title: Energy
– volume: 180
  start-page: 424
  year: 2016
  end-page: 434
  article-title: Co‐estimation of state‐of‐charge, capacity and resistance for lithium‐ion batteries based on a high‐fidelity electrochemical model
  publication-title: Appl Energy
– volume: 175
  start-page: 635
  issue: 1
  year: 2008
  end-page: 643
  article-title: Development of a voltage‐behavior model for NiMH batteries using an impedance‐based modeling concept
  publication-title: J Power Sources
– volume: 17
  start-page: 693
  issue: 5
  year: 1972
  end-page: 698
  article-title: Approaches to adaptive filtering
  publication-title: IEEE Trans Autom Control
– volume: 142
  start-page: 678
  year: 2018
  end-page: 688
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
– volume: 121
  start-page: 20
  year: 2014
  end-page: 27
  article-title: A new neural network model for the state‐of‐charge estimation in the battery degradation process
  publication-title: Appl Energy
– volume: 172
  start-page: 169
  year: 2016
  end-page: 179
  article-title: Online state of charge and model parameter co‐estimation based on a novel multi‐timescale estimator for vanadium redox flow battery
  publication-title: Appl Energy
– volume: 365
  start-page: 308
  year: 2017
  end-page: 319
  article-title: On‐board adaptive model for state of charge estimation of lithium‐ion batteries based on Kalman filter with proportional integral‐based error adjustment
  publication-title: J Power Sources
– year: 2017
  article-title: A wavelet transform‐adaptive unscented Kalman filter approach for state of charge estimation of LiFePo4 battery
  publication-title: Int J Energy Res
– volume: 130
  start-page: 266
  issue: 1
  year: 2004
  end-page: 274
  article-title: Rapid test and non‐linear model characterisation of solid‐state lithium‐ion batteries
  publication-title: J Power Sources
– volume: 196
  start-page: 4826
  issue: 10
  year: 2011
  end-page: 4831
  article-title: Equivalent circuit model parameters of a high‐power li‐ion battery: thermal and state of charge effects
  publication-title: J Power Sources
– volume: 235
  start-page: 148
  year: 2013
  end-page: 158
  article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency
  publication-title: J Power Sources
– volume: 259
  start-page: 566
  year: 2018
  end-page: 577
  article-title: A comparative study of different equivalent circuit models for estimating state‐of‐charge of lithium‐ion batteries
  publication-title: Electrochim Acta
– volume: 240
  start-page: 184
  year: 2013
  end-page: 192
  article-title: Online battery state of health estimation based on genetic algorithm for electric and hybrid vehicle applications
  publication-title: J Power Sources
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  end-page: 292
  article-title: Extended Kalman filtering for battery management systems of LiPB‐based HEV battery packs: part 3. State and parameter estimation
  publication-title: J Power Sources
– volume: 328
  start-page: 615
  year: 2016
  end-page: 626
  article-title: Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium‐ion batteries
  publication-title: J Power Sources
– volume: 162
  start-page: 163
  year: 2016
  end-page: 171
  article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method
  publication-title: Appl Energy
– volume: 269
  start-page: 682
  year: 2014
  end-page: 693
  article-title: State‐of‐charge estimation for battery management system using optimized support vector machine for regression
  publication-title: J Power Sources
– volume: 281
  start-page: 114
  year: 2015
  end-page: 130
  article-title: Critical review of on‐board capacity estimation techniques for lithium‐ion batteries in electric and hybrid electric vehicles
  publication-title: J Power Sources
– year: 2017
– volume: 258
  start-page: 321
  year: 2014
  end-page: 339
  article-title: Critical review of the methods for monitoring of lithium‐ion batteries in electric and hybrid vehicles
  publication-title: J Power Sources
– volume: 113
  start-page: 106
  year: 2014
  end-page: 115
  article-title: State of charge estimation of lithium‐ion batteries using the open‐circuit voltage at various ambient temperatures
  publication-title: Appl Energy
– volume: 283
  start-page: 24
  year: 2015
  end-page: 36
  article-title: An integrated approach for real‐time model‐based state‐of‐charge estimation of lithium‐ion batteries
  publication-title: J Power Sources
– volume: 256
  start-page: 410
  year: 2014
  end-page: 423
  article-title: A survey of mathematics‐based equivalent‐circuit and electrochemical battery models for hybrid and electric vehicle simulation
  publication-title: J Power Sources
– volume: 253
  start-page: 412
  year: 2014
  end-page: 418
  article-title: Development of a voltage relaxation model for rapid open‐circuit voltage prediction in lithium‐ion batteries
  publication-title: J Power Sources
SSID ssj0009917
Score 2.373564
Snippet Summary To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are...
To achieve accurate state‐of‐charge (SoC) estimation for LiFePO4 batteries, the effects of temperature, hysteresis, and thermal evolution are elaborately...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 2710
SubjectTerms adaptive extended Kalman filter
Adaptive filters
Algorithms
Batteries
Computer simulation
differential evolution algorithm
Electric potential
Equivalent circuits
Estimators
Evolutionary algorithms
Exploitation
Extended Kalman filter
Heat generation
Hysteresis
hysteresis model
Hysteresis models
Internet
Kalman filters
Lithium-ion batteries
Mathematical models
Parameter estimation
Parameter identification
Parameters
State of charge
Temperature effects
Thermal evolution
thermal evolution model
Tracking
Voltage
Title State‐of‐charge estimators considering temperature effect, hysteresis potential, and thermal evolution for LiFePO4 batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4060
https://www.proquest.com/docview/2055177447
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: ADMLS
  dateStart: 20050610
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-907X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1PT8IwGMYbw0kP_jeiaHrgyGBbu247GgMhxqghkhAvS9u1kSiDsOHBEx_Bz-gn8W03BD0ZL9tlTZv27fo829tfEWqCo3A18TwniNzQoSmRjpCEOr7vgtigmgtuaZ93rD-kN6NgtHHUV8mH-P7gZmaGfV-bCc5F3llDQ9W8DYuRceseYdZMDdbgKFA94eovJdi_Ubld1pTsVOV-KMpNXWoXlt4eelo1qcwneWkvCtGW779ojf9q8z7areQmvirj4wBtqewQ7WxACI_Q0urNz-XHVMPFkpMUNuyNifHjOZbVkZ7wMDYgq4rCjMtMkBZ-NixoMO3jHM-mhUk-4q8tzLMUG205gdrVWxXfGBQyvh331MM9xcKSPcGoH6Nhr_t43XeqcxmcmW92nrNASiW5z6krXKJhgF0dMw216jiimlBFFCUq4pRKrplg2vMkjVMeUk4VI-QE1bJppk4RJjHhoU8Jg4L2HOwwEmDvacpBR8U8qKPGapSSanLlie-CzDORFNZR03Z3MivRHEkJYfYTNU9MRyfdgbmd_e2xc7QNcigyiWB-0EC1Yr5QFyA5CnFpo-sLlK7XHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIYtBAMwcEdcCnjoSNo0PrmNCFEVKBchKlViiBzHFhX0orYwMPUReEaehHOcFAoTYkkWW7Z8if_fOf7MWBkdhWtEreb4kRs6kAnlpEqA43kuig0wMpWW9nkdNFpw0fbbRVQlnYXJ-RBfG240M-z3miY4bUhXv6mheljB1Qjt-gIE6FJIEN19o6NQ94TT_5RoANv5gVnKWi0y_tCUs8rULi31VfYwrVQeUfJUeRmnFfX2i9f4v1qvsZVCcfKTfIissznd22DLMxzCTTaxkvNj8t43-LDwJM0Jv9ElSz7iqrjVExNzYlkVIGaeB4Mc80fCQaNv74z4oD-m-CP5fMxlL-MkL7tYun4thjhHkcybnbq-vQGeWrgnevUt1qqf3Z82nOJqBmfg0eHzwFdKK-lJcFNXGOxj18SBwVJNHIERoIUGoSMJoKQJ0sDUagriTIYgQQdCbLP5Xr-ndxgXsZChByLAjPYq7DBK0eFDJlFKxdLfZaVpNyXF_BolnotKjwZTuMvKtr2TQU7nSHIOs5foYUINnZzd0Wvvb8mO2GLj_qqZNM-vL_fZEqqjiOLCPL_E5sfDF32ACmScHtqh9gkLBNs_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSsQwFIaDKIguvIvjNQuX07FtTm9LUYs3dBgcGHAR0jRBUTtlLi5c-Qg-o0_iSdrxthI37aYhITlp_r89-ULIPjoKVzPPc4LYjRzImXQyycDxfRfFBmiRCUv7vApPu3DeC3p1VqXZC1PxIT4_uJmZYd_XZoKrMtcHX9RQNWjhaoR2fQaCJDbpfMedL3QU6p5o8p8SDWCv2jBrih7UBX9oyu_K1C4t6SK5nTSqyih5aI1HWUu-_OI1_q_VS2ShVpz0sAqRZTKlihUy_41DuEpereR8f33ra7xYeJKiBr_xZCz5kMr6VE98mBqWVQ1iplUySJPeGRw0-vb7IS37I5N_JB6bVBQ5NfLyCWtXz3WIUxTJ9PI-Ve1roJmFe6JXXyPd9OTm6NSpj2ZwSt9sPg8DKZUUvgA3c5nGMXZ1EmqsVScxaAaKKWAqFgBS6DALtedJSHIRgQAVMrZOpot-oTYIZQkTkQ8sxIL2KOwoztDhQy5QSiUiaJDtyTDxen4Nue-i0jPBFDXIvu1vXlZ0Dl5xmH2uBtx0ND_pmNvm3x7bI7Pt45Rfnl1dbJE5FEexSQvzg20yPRqM1Q4KkFG2ayPtA-YN2sM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90charge+estimators+considering+temperature+effect%2C+hysteresis+potential%2C+and+thermal+evolution+for+LiFePO4+batteries&rft.jtitle=International+journal+of+energy+research&rft.au=Xie%2C+Jiale&rft.au=Ma%2C+Jiachen&rft.au=Bai%2C+Kun&rft.date=2018-06-25&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=42&rft.issue=8&rft.spage=2710&rft.epage=2727&rft_id=info:doi/10.1002%2Fer.4060&rft.externalDBID=10.1002%252Fer.4060&rft.externalDocID=ER4060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon