Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem

We propose a new adaptive noise reduction method for interferometric synthetic aperture radar (InSAR) complex-amplitude images. In the proposed method, we detect residues (singular points) in the phase image as well as their neighbors at first. Normal areas that contain no residue are used for the e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 40; no. 3; pp. 699 - 709
Main Authors ANDRIYAN BAYU SUKSMONO, HIROSE, Akira
Format Journal Article
LanguageEnglish
Published New York, NY Institute of Electrical and Electronics Engineers 01.03.2002
Subjects
Online AccessGet full text
ISSN0196-2892
DOI10.1109/TGRS.2002.1000329

Cover

Abstract We propose a new adaptive noise reduction method for interferometric synthetic aperture radar (InSAR) complex-amplitude images. In the proposed method, we detect residues (singular points) in the phase image as well as their neighbors at first. Normal areas that contain no residue are used for the estimation of correct pixel values at the marked residues according to the fifth-order non-causal complex-valued Markov random field (CMRF) model. The process is performed block-wise under the assumption of a locally stationary condition of statistics. Using a CMRF lattice complex-valued neural-network, the error energy defined as the squared norm of distance between signal and estimated values is minimized by LMS steepest descent algorithm. Eventually, the number of residues is decreased. An application is also presented. An InSAR image around Mt. Fuji is processed by the proposed technique and then phase-unwrapped by the branch-cut method. It is found that after the application of the proposed method, a better phase unwrapped image can be obtained successfully. (Author)
AbstractList We propose a new adaptive noise reduction method for interferometric synthetic aperture radar (InSAR) complex-amplitude images. In the proposed method, we detect residues (singular points) in the phase image as well as their neighbors at first. Normal areas that contain no residue are used for the estimation of correct pixel values at the marked residues according to the fifth-order non-causal complex-valued Markov random field (CMRF) model. The process is performed block-wise under the assumption of a locally stationary condition of statistics. Using a CMRF lattice complex-valued neural-network, the error energy defined as the squared norm of distance between signal and estimated values is minimized by LMS steepest descent algorithm. Eventually, the number of residues is decreased. An application is also presented. An InSAR image around Mt. Fuji is processed by the proposed technique and then phase-unwrapped by the branch-cut method. It is found that after the application of the proposed method, a better phase unwrapped image can be obtained successfully. (Author)
Author ANDRIYAN BAYU SUKSMONO
HIROSE, Akira
Author_xml – sequence: 1
  surname: ANDRIYAN BAYU SUKSMONO
  fullname: ANDRIYAN BAYU SUKSMONO
  organization: Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
– sequence: 2
  givenname: Akira
  surname: HIROSE
  fullname: HIROSE, Akira
  organization: Research Center for Advanced Science and Technology (RCAST) and the Department of Frontier Informatics, University of Tokyo, Tokyo 153-8904, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13652955$$DView record in Pascal Francis
BookMark eNotUMtKxDAUzWIEx8cHuMtGdx3zaDqT5SA6DijCqOtyk9xqJE1q044KfrxFXR04TzhHZBZTRELOOFtwzvTl02b3uBCMiQVnjEmhZ2TOuK4KsdLikBzl_MYYLxVfzsn32kE3-D3SmHxG2qMb7eBTpKmh2_i43lHfwgtmaiCjo5MA1Ka2C_hZ7CGME3e_u6FtchgoREf9kCl0XfAWfnuGRLvXKUvH-NFPgo8vtOuTCdiekIMGQsbTfzwmzzfXT1e3xd3DZnu1vis6wcuhsGZplbWqXEkDBkWpWGWNsyUahdKUUmsJQjScmUZpEEt0zlqsGlatOEguj8nFX--0-z5iHurWZ4shQMQ05losmS6ZqCbj-b8RsoXQ9BCtz3XXTx_0XzWXlRJaKfkDIZ1wcw
CODEN IGRSD2
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright_xml – notice: 2002 INIST-CNRS
DBID IQODW
8FD
H8D
L7M
DOI 10.1109/TGRS.2002.1000329
DatabaseName Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 709
ExternalDocumentID 13652955
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
IQODW
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
Y6R
8FD
H8D
L7M
ID FETCH-LOGICAL-p214t-cb7c5cc5483babe24506cbdc4eb5e3b43993a22f10bf59a27eddcce6f0681a313
ISSN 0196-2892
IngestDate Sat Sep 27 19:02:50 EDT 2025
Mon Jul 21 09:14:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords algorithms
models
interferometry
neural networks
data processing
remote sensing
synthetic aperture radar
amplitude
noise
filtering
errors
Pixel
statistics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p214t-cb7c5cc5483babe24506cbdc4eb5e3b43993a22f10bf59a27eddcce6f0681a313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27094026
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_27094026
pascalfrancis_primary_13652955
PublicationCentury 2000
PublicationDate 2002-03-01
PublicationDateYYYYMMDD 2002-03-01
PublicationDate_xml – month: 03
  year: 2002
  text: 2002-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationYear 2002
Publisher Institute of Electrical and Electronics Engineers
Publisher_xml – name: Institute of Electrical and Electronics Engineers
SSID ssj0014517
Score 1.9814259
Snippet We propose a new adaptive noise reduction method for interferometric synthetic aperture radar (InSAR) complex-amplitude images. In the proposed method, we...
SourceID proquest
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 699
SubjectTerms Applied geophysics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Title Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application to phase unwrapping problem
URI https://www.proquest.com/docview/27094026
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014517
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCAkeEAwQGzD8gHipAokdJ-1jhVYqNIbUpVLfIsdxoEJLQpNqCPHjudd20lSbxMdLVCVtU-We-tq-555DyGvFJcAk1x5cLTwUvPMmkMg8AZMTKXQMKdSwLc6j-TL8uBKrXSnGdJe02Vv188a-kv-JKpyDuGKX7D9Etv9SOAGvIb5whAjD8a9iPM1lbag_ZbVu0P8kt1qwtj_kYroYrS8lijhgrsqxLiAth1z_8FDlG859WsysG05fRRiUtHFiWn-Fz4625dVG1rVtXTcWNMNZLa4Y0Wyicx43JYgvuup6hgyHXQMo9KhBwrzLlqYW9a25tPbfMET15Z_5euMcH6d72xJsx8vqdionkQerub2h1iozOUjxwbgZWZckl4Jjo5hww-huxFGTD4sLwy1BhofP3YbJnpL2-ed0tjw7S5PTVfKm_u6hyRgW453jym1yh0ES8G27X190CkXguuvtL3dFcLjru2v3RA6tbOBvVFj_k2up3MxPkofkgVtY0KlFySNyS5eH5P5AbvKQ3DV0X9U8Jr865FCDHNojh1YFNcihFjnUIIfCBUn3kUMBOdQgh0J4KSCHDpBD24oa5NAdcqhDzhOynJ0m7-ee8-HwahaEraeyWAmlYG3LM5lpFgo_UlmuQp0JzTNc0XLJWBH4WSEmksU6z5XSUeFH40DygD8lB2VV6meEjhXnLJBBIVGZchzLiVKopyS5iKUW_hE52XusaW01V1JkY7KJEEfkVfecUxgIsbolS11tm5TFKAXJouM_vuM5ubdD7Aty0G62-iVMLdvsxADiN_ltgAE
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+noise+reduction+of+InSAR+images+based+on+a+complex-valued+MRF+model+and+its+application+to+phase+unwrapping+problem&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Suksmono%2C+A+B&rft.au=Hirose%2C+A&rft.date=2002-03-01&rft.issn=0196-2892&rft.volume=40&rft.issue=3&rft.spage=699&rft.epage=709&rft_id=info:doi/10.1109%2FTGRS.2002.1000329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon