Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms

Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the pat...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 40; no. 4; p. 96
Main Authors Premaladha, J., Ravichandran, K. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0148-5598
1573-689X
1573-689X
DOI10.1007/s10916-016-0460-2

Cover

More Information
Summary:Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter . A new segmentation algorithm called Normalized Otsu’s Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0148-5598
1573-689X
1573-689X
DOI:10.1007/s10916-016-0460-2