Ensemble multicolour FRET model enables barcoding at extreme FRET levels
Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intr...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 10; pp. 925 - 932 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1748-3387 1748-3395 1748-3395 |
DOI | 10.1038/s41565-018-0205-0 |
Cover
Summary: | Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes—with FRET efficiencies reaching 76%—and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET.
An ensemble multicolour FRET model is introduced and used to extend multicolour barcoding to extreme FRET regimes, enabling in silico design of 580 barcode responses using common dyes and cytometer optics, and permitting fully automated decoding. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1748-3387 1748-3395 1748-3395 |
DOI: | 10.1038/s41565-018-0205-0 |