Ensemble multicolour FRET model enables barcoding at extreme FRET levels
Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intr...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 10; pp. 925 - 932 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1748-3387 1748-3395 1748-3395 |
DOI | 10.1038/s41565-018-0205-0 |
Cover
Abstract | Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes—with FRET efficiencies reaching 76%—and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET.
An ensemble multicolour FRET model is introduced and used to extend multicolour barcoding to extreme FRET regimes, enabling in silico design of 580 barcode responses using common dyes and cytometer optics, and permitting fully automated decoding. |
---|---|
AbstractList | Quantitative models of Förster resonance energy transfer (FRET)-pioneered by Förster-define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes-with FRET efficiencies reaching 76%-and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET.Quantitative models of Förster resonance energy transfer (FRET)-pioneered by Förster-define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes-with FRET efficiencies reaching 76%-and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET. Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes—with FRET efficiencies reaching 76%—and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET. Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes—with FRET efficiencies reaching 76%—and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET. An ensemble multicolour FRET model is introduced and used to extend multicolour barcoding to extreme FRET regimes, enabling in silico design of 580 barcode responses using common dyes and cytometer optics, and permitting fully automated decoding. |
Author | Ng, Andy Dagher, Milad Juncker, David Kleinman, Michael |
Author_xml | – sequence: 1 givenname: Milad surname: Dagher fullname: Dagher, Milad organization: Biomedical Engineering Department, McGill University, McGill University and Genome Quebec Innovation Center – sequence: 2 givenname: Michael surname: Kleinman fullname: Kleinman, Michael organization: Biomedical Engineering Department, McGill University, McGill University and Genome Quebec Innovation Center – sequence: 3 givenname: Andy surname: Ng fullname: Ng, Andy organization: Biomedical Engineering Department, McGill University, McGill University and Genome Quebec Innovation Center – sequence: 4 givenname: David orcidid: 0000-0002-7313-1162 surname: Juncker fullname: Juncker, David email: david.juncker@mcgill.ca organization: Biomedical Engineering Department, McGill University, McGill University and Genome Quebec Innovation Center, Neurology and Neurosurgery Department, McGill University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30061659$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLw0AUhQep2If-ADcScOMmOo_MI0sprRUKgtT1MJPclJbJpGYS0X_vlFQFV_fA-Tjce88UjXzjAaFrgu8JZuohZIQLnmKiUkxxFGdoQmSmUsZyPvrVSo7RNIQ9xpzmNLtAY4axIILnE7Ra-AC1dZDUvet2ReOavk2Wr4tNUjcluAS8iW5IrGmLptz5bWK6BD67FmoYOAcf4MIlOq-MC3B1mjP0tlxs5qt0_fL0PH9cpwdKaJcaJUzGCgaGZWVR5ZQCECWxtVwYIitSKKCU2YpbVeUGV5ZVnPOcqlJYKTmbobsh99A27z2ETte7UIBzxkPTB02xwopxJbOI3v5D9_E4H7fTlBAhsJTsSN2cqN7WUOpDu6tN-6V_fhQBOgAhWn4L7V8MwfpYhB6K0LEIfSxCY_YNPqx42g |
Cites_doi | 10.1002/anie.200600288 10.1074/mcp.M111.011460 10.1002/cyto.a.22267 10.1038/nbt0402-359 10.1021/nn3045215 10.1021/ja034564p 10.1021/ja027647z 10.1038/nphoton.2009.96 10.1002/cphc.200500217 10.1007/s10867-007-9046-z 10.1021/pr700822t 10.1074/mcp.M800171-MCP200 10.1016/S0006-3495(03)75126-1 10.1038/nmat3938 10.1021/la503251s 10.1002/cyto.a.22011 10.1021/nl052105b 10.1038/nmeth.3995 10.1002/smll.201202655 10.1529/biophysj.105.069351 10.1016/j.cbpa.2013.11.012 10.1016/1011-1344(92)85039-W 10.1021/ac0008284 10.1038/ncomms6615 10.1007/s12551-017-0252-z 10.1016/S0006-3495(79)85171-1 10.1021/bi00591a030 10.1038/nmeth.1502 10.1208/s12248-014-9583-x 10.1002/anie.201005402 10.1039/c4cc01072h 10.1007/978-0-387-46312-4 10.1038/90228 10.1021/ja1105464 10.1002/adom.201600548 10.1002/0471722731 10.1016/S0167-7799(01)01844-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Oct 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Oct 2018 |
DBID | NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0205-0 |
DatabaseName | PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic |
DatabaseTitle | PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 932 |
ExternalDocumentID | 30061659 10_1038_s41565_018_0205_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-p212t-a86a43c3ea34dcf922ee1870bb56a17f1c8e223bf5b8f9a0fb3f555928d6b7753 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu Sep 04 16:09:36 EDT 2025 Fri Jul 25 08:55:09 EDT 2025 Mon Jul 21 05:58:30 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p212t-a86a43c3ea34dcf922ee1870bb56a17f1c8e223bf5b8f9a0fb3f555928d6b7753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7313-1162 |
PMID | 30061659 |
PQID | 2116607734 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2080835874 proquest_journals_2116607734 pubmed_primary_30061659 springer_journals_10_1038_s41565_018_0205_0 |
PublicationCentury | 2000 |
PublicationDate | 20181000 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Corry, Jayatilaka, Rigby (CR28) 2005; 89 Fulton, McDade, Smith, Kienker, Kettman (CR3) 1997; 43 Lee (CR18) 2010; 49 Nguyen (CR30) 2016; 5 Uhlen (CR34) 2016; 13 Ferguson, Steemers, Walt (CR12) 2000; 72 Koppel, Fleming, Strittmatter (CR29) 1979; 18 Lee (CR31) 2014; 13 Wu (CR4) 2009; 8 Liu, Lu (CR24) 2002; 124 Wang, Tan (CR5) 2006; 6 Wagh (CR8) 2013; 9 Fabian, Horvath, Vamosi, Vereb, Szollosi (CR16) 2013; 83 Berney, Danuser (CR27) 2003; 84 Han, Gao, Su, Nie (CR10) 2001; 19 CR32 Juncker, Bergeron, Laforte, Li (CR36) 2014; 18 Schweitzer (CR37) 2002; 20 Förster (CR13) 1949; 4a Uphoff (CR19) 2010; 7 Stein, Steinhauer, Tinnefeld (CR17) 2011; 133 Bunt, Wouters (CR20) 2017; 9 Mátyus (CR26) 1992; 12 Dempster, Laird, Donald (CR42) 1977; 39 Spillmann (CR22) 2014; 50 Shapiro (CR25) 2003 Buckhout-White (CR21) 2014; 5 Lakowicz (CR40) 2006 Vaidya, Couzis, Maldarelli (CR6) 2015; 31 Nolan, Sklar (CR1) 2002; 20 Gonzalez (CR38) 2008; 7 King (CR33) 2014; 16 Watrob, Pan, Barkley (CR15) 2003; 125 Raicu (CR23) 2007; 33 Stuchlý (CR9) 2012; 81 CR41 Hardin (CR39) 2009; 3 Pla-Roca, Leulmi, Tourekhanova, Bergeron, Laforte, Moreau, Gosline, Bertos, Hallett, Park, Juncker (CR35) 2011; 11 Wilson, Cossins, Spiller (CR2) 2006; 45 Wolber, Hudson (CR14) 1979; 28 Wang (CR11) 2013; 7 Clapp, Medintz, Mattoussi (CR7) 2006; 7 |
References_xml | – volume: 45 start-page: 6104 year: 2006 end-page: 6117 ident: CR2 article-title: Encoded microcarriers for high-throughput multiplexed detection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200600288 – volume: 11 start-page: M111.011460 issue: 4 year: 2011 ident: CR35 article-title: Antibody Colocalization Microarray: A Scalable Technology for Multiplex Protein Analysis in Complex Samples publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.M111.011460 – volume: 83 start-page: 375 year: 2013 end-page: 385 ident: CR16 article-title: TripleFRET measurements in flow cytometry publication-title: Cytom. A doi: 10.1002/cyto.a.22267 – volume: 20 start-page: 359 year: 2002 end-page: 365 ident: CR37 article-title: Multiplexed protein profiling on microarrays by rolling-circle amplification publication-title: Nat. Biotechnol. doi: 10.1038/nbt0402-359 – volume: 4a start-page: 321 year: 1949 end-page: 327 ident: CR13 article-title: Experimentelle und theoretische Untersuchung des zwischengmolekularen übergangs von Elektronenanregungsenergie publication-title: Naturforsch. A Astrophys. Phys. Phys. Chem. – volume: 7 start-page: 471 year: 2013 end-page: 481 ident: CR11 article-title: Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection publication-title: ACS Nano doi: 10.1021/nn3045215 – volume: 125 start-page: 7336 year: 2003 end-page: 7343 ident: CR15 article-title: Two-step FRET as a structural tool publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034564p – volume: 124 start-page: 15208 year: 2002 end-page: 15216 ident: CR24 article-title: FRET study of a trifluorophore-labelled DNAzyme publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027647z – volume: 3 start-page: 406 year: 2009 end-page: 411 ident: CR39 article-title: Increased light harvesting in dye-sensitized solar cells with energy relay dyes publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.96 – volume: 7 start-page: 47 year: 2006 end-page: 57 ident: CR7 article-title: Förster resonance energy transfer investigations using quantum-dot fluorophores publication-title: ChemPhysChem doi: 10.1002/cphc.200500217 – volume: 33 start-page: 109 year: 2007 end-page: 127 ident: CR23 article-title: Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins publication-title: J. Biol. Phys. doi: 10.1007/s10867-007-9046-z – volume: 7 start-page: 2406 year: 2008 end-page: 2414 ident: CR38 article-title: Development and validation of sandwich ELISA microarrays with minimal assay interference publication-title: J. Proteome Res. doi: 10.1021/pr700822t – volume: 8 start-page: 245 year: 2009 end-page: 257 ident: CR4 article-title: Antibody array analysis with label-based detection and resolution of protein size publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800171-MCP200 – volume: 84 start-page: 3992 year: 2003 end-page: 4010 ident: CR27 article-title: FRET or no FRET: a quantitative comparison publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)75126-1 – volume: 13 start-page: 524 year: 2014 end-page: 529 ident: CR31 article-title: Universal process-inert encoding architecture for polymer microparticles publication-title: Nat. Mater. doi: 10.1038/nmat3938 – volume: 31 start-page: 3167 year: 2015 end-page: 3179 ident: CR6 article-title: Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization publication-title: Langmuir doi: 10.1021/la503251s – volume: 81 start-page: 120 year: 2012 end-page: 129 ident: CR9 article-title: An automated analysis of highly complex flow cytometry-based proteomic data publication-title: Cytom. A doi: 10.1002/cyto.a.22011 – volume: 6 start-page: 84 year: 2006 end-page: 88 ident: CR5 article-title: Multicolor FRET silica nanoparticles by single wavelength excitation publication-title: Nano. Lett. doi: 10.1021/nl052105b – volume: 13 start-page: 823 year: 2016 end-page: 827 ident: CR34 article-title: A proposal for validation of antibodies publication-title: Nat. Methods doi: 10.1038/nmeth.3995 – volume: 9 start-page: 2129 year: 2013 end-page: 2139 ident: CR8 article-title: Polymeric nanoparticles with sequential and multiple FRET cascade mechanisms for multicolor and multiplexed imaging publication-title: Small doi: 10.1002/smll.201202655 – volume: 43 start-page: 1749 year: 1997 end-page: 1756 ident: CR3 article-title: Advanced multiplex analysis with the FlowMetrix system publication-title: Clin. Chem. – volume: 89 start-page: 3822 year: 2005 end-page: 3836 ident: CR28 article-title: A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries publication-title: Biophys. J. doi: 10.1529/biophysj.105.069351 – volume: 18 start-page: 29 year: 2014 end-page: 37 ident: CR36 article-title: Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2013.11.012 – volume: 12 start-page: 323 year: 1992 end-page: 337 ident: CR26 article-title: Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions publication-title: J. Photochem. Photobiol. doi: 10.1016/1011-1344(92)85039-W – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR42 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Statist. Soc. Ser. B – volume: 72 start-page: 5618 year: 2000 end-page: 5624 ident: CR12 article-title: High-density fiber-optic DNA random microsphere array publication-title: Anal. Chem. doi: 10.1021/ac0008284 – volume: 5 start-page: 5615 year: 2014 end-page: 5630 ident: CR21 article-title: Assembling programmable FRET-based photonic networks using designer DNA scaffolds publication-title: Nat. Commun. doi: 10.1038/ncomms6615 – volume: 9 start-page: 119 year: 2017 end-page: 129 ident: CR20 article-title: FRET from single to multiplexed signaling events publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0252-z – volume: 28 start-page: 197 year: 1979 end-page: 210 ident: CR14 article-title: An analytic solution to the Förster energy transfer problem in two dimensions publication-title: Biophys. J. doi: 10.1016/S0006-3495(79)85171-1 – volume: 18 start-page: 5450 year: 1979 end-page: 5457 ident: CR29 article-title: Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer publication-title: Biochemistry doi: 10.1021/bi00591a030 – volume: 7 start-page: 831 year: 2010 end-page: 836 ident: CR19 article-title: Monitoring multiple distances within a single molecule using switchable FRET publication-title: Nat. Methods doi: 10.1038/nmeth.1502 – volume: 16 start-page: 504 year: 2014 end-page: 515 ident: CR33 article-title: Ligand binding assay critical reagents and their stability: recommendations and best practices from the Global Bioanalysis Consortium Harmonization Team publication-title: AAPS J. doi: 10.1208/s12248-014-9583-x – volume: 49 start-page: 9922 year: 2010 end-page: 9925 ident: CR18 article-title: Single-molecule four-color FRET publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005402 – volume: 50 start-page: 7246 year: 2014 end-page: 7249 ident: CR22 article-title: Extending FRET cascades on linear DNA photonic wires publication-title: Chem. Commun. doi: 10.1039/c4cc01072h – ident: CR32 – year: 2006 ident: CR40 publication-title: Principles of Fluorescence Spectroscopy doi: 10.1007/978-0-387-46312-4 – volume: 19 start-page: 631 year: 2001 end-page: 635 ident: CR10 article-title: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules publication-title: Nat. Biotechnol. doi: 10.1038/90228 – volume: 133 start-page: 4193 year: 2011 end-page: 4195 ident: CR17 article-title: Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1105464 – volume: 5 start-page: 1600548 year: 2016 ident: CR30 article-title: Programmable microfluidic synthesis of over one thousand uniquely identifiable spectral codes publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600548 – ident: CR41 – year: 2003 ident: CR25 publication-title: Practical Flow Cytometry doi: 10.1002/0471722731 – volume: 20 start-page: 9 year: 2002 end-page: 12 ident: CR1 article-title: Suspension array technology: evolution of the flat-array paradigm publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(01)01844-3 |
SSID | ssj0052924 |
Score | 2.4879014 |
Snippet | Quantitative models of Förster resonance energy transfer (FRET)—pioneered by Förster—define our understanding of FRET and underpin its widespread use. However,... Quantitative models of Förster resonance energy transfer (FRET)-pioneered by Förster-define our understanding of FRET and underpin its widespread use. However,... |
SourceID | proquest pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 925 |
SubjectTerms | 631/61/350/2093 639/925/926 639/925/930/1032 639/925/930/527/2047 Bar codes Chemical compounds Chemistry and Materials Science Decoding Dyes Energy transfer Fluorescence Fluorescence resonance energy transfer Fluorophores Immunoassays Labeling Letter Materials Science Microparticles Nanotechnology Nanotechnology and Microengineering Oligonucleotides |
Title | Ensemble multicolour FRET model enables barcoding at extreme FRET levels |
URI | https://link.springer.com/article/10.1038/s41565-018-0205-0 https://www.ncbi.nlm.nih.gov/pubmed/30061659 https://www.proquest.com/docview/2116607734 https://www.proquest.com/docview/2080835874 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA66veiD-NvpHBF8k7K1aZr0SVRah-CQscHeStImT7Oda_f_e0nbTVB8KYGmodxdct_lLvkQuk9VRlKVMicU5kiOq0yLEWekQdvgbnxq6XzeJ8F47r8t6KLZcCubssp2TbQLdVakZo98CIFKEIwYI_7j6ssxrFEmu9pQaOyjrgtIxFA3sMU24KJeWJPaMp87EIqxNqtJ-LA0gYspW-MOACZo_IUwf2VHrdOJj9FRgxbxU63eE7Sn8lN0-OMOwTM0jvJSfcqlwrY20FxCvVnjeBrNsGW5wcqejiqxBJMujKfCosKwJJuNwbrf0hQOledoHkezl7HT0CM4K_A3lSN4IHySEiWIn6U69DylXJh-UtJAuEy7KVfg_KWmkutQjLQkmkIA4fEskAzClAvUyYtcXSGcUZ2GjBCY_J6fcSFd5cOnBAbOJM9ID_Vb4SSNjZfJTiM9dLd9DdZpUg4iV8UG-gAgBYzHGfS5rIWarOprNBJi4FNAwx56aKW8G9zmxglPaj0loKfE6CkZXf__KzfowDNKteV2fdSp1ht1C7ChkgNrG_Dk8esAdZ-jycf0GwnAv7Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5VB6qNpS2qW0NRI9oYhN7MTOAaE-drUUWFVokbgZO3ZONLslu0L8OX4bM04CSEW9cYsUx4pmxvPwPD6AncI7XvhCRrmhlpzY05Pk0aBEbqO5EWmA8zmZZOMz8es8PV-B264XhsoqO50YFLWbFXRHvoeBSpYNpOTiYP43ItQoyq52EBqmhVZw-2HEWNvYceRvrjGEq_cPfyK_vybJaDj9MY5alIFojmp7ERmVGcEL7g0XrijzJPE-Rim2Ns1MLMu4UB5tqC1Tq8rcDErLyxT98ES5zEpJqBFoAlYFXaD0YPX7cPL7tLMFaZI3sLpSqAiDQdnlVbnaqyl0osI5FaHLhg9P-bj_5GeD2Ru9hletv8q-NQL2BlZ89RZePppiuA7jYVX7P_bSs1CdSGOwl1dsdDqcsoCzw3zoz6qZRWrNyFYys2BoFOhqsll3SaVL9Ts4exbSbUCvmlX-AzCXlkUuOUf1kwinjI29wE85buyscrwPWx1xdHvKav0gE33Yvn-N54OSHqbysyWuQZcYvUwlcc37hqh63gzy0JwcuCzN-7DbUflh85Cd50o3fNLIJ0180oPN___KF3gxnp4c6-PDydFHWEuIwaH4bwt6i6ul_4ROzMJ-biWFwcVzC-cdgrIBYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nq4TGAwI2oGOAJ8HTFLWJk9h5mBDQVh2Dqpo2aW_Gju2nkpam1cS_yF_FnZMwpCHe9hYpjhXdne_D9_EDeFs6y0tXiqjQ1JITO3oSPBp65DaamzQLcD5fZ_n0Kv18nV3vwK-uF4bKKjudGBS1XZZ0Rz7AQCXPh0LwdODbsoj5aPJ-9SMiBCnKtHZwGrqFWbCnYdxY2-Rx7n7eYDhXn56NkPfvkmQyvvw0jVrEgWiFKnwTaZnrlJfcaZ7a0hdJ4lyMEm1MlutY-LiUDu2p8ZmRvtBDb7jP0CdPpM2NEIQggeagJ9DqYyDY-ziezS86u5AlRQOxK1IZYWAouhwrl4OawigqopMRum_48C9_906uNpjAyWN41Pqu7EMjbE9gx1VP4eFfEw33YTquavfdLBwLlYo0Enu7ZpOL8SULmDvMhV6tmhmk1pLsJtMbhlSma8pm3YLKmOoDuLoX0j2D3WpZuRfAbObLQnCOqihJrdQmdil-ynFja6TlfTjqiKPaE1erW_now_Gf13hWKAGiK7fc4hp0j9HjlALXPG-IqlbNUA_FyZnLs6IPJx2VbzcPmXouVcMnhXxSxCc1PPz_r7yBByik6svZ7Pwl7CXE31AHeAS7m_XWvUJ_ZmNet4LC4Nt9y-Zvi1QFpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+multicolour+FRET+model+enables+barcoding+at+extreme+FRET+levels&rft.jtitle=Nature+nanotechnology&rft.au=Dagher%2C+Milad&rft.au=Kleinman%2C+Michael&rft.au=Ng%2C+Andy&rft.au=Juncker%2C+David&rft.date=2018-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=13&rft.issue=10&rft.spage=925&rft.epage=932&rft_id=info:doi/10.1038%2Fs41565-018-0205-0&rft.externalDocID=10_1038_s41565_018_0205_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |