Adding Isolated Vertices Makes Some Online Algorithms Optimal

An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with “enough” isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algo...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms Vol. 9538; pp. 65 - 76
Main Authors Boyar, Joan, Kudahl, Christian
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319295152
9783319295152
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-29516-9_6

Cover

Abstract An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with “enough” isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.
AbstractList An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with “enough” isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.
Author Boyar, Joan
Kudahl, Christian
Author_xml – sequence: 1
  givenname: Joan
  surname: Boyar
  fullname: Boyar, Joan
  email: joan@imada.sdu.dk
– sequence: 2
  givenname: Christian
  surname: Kudahl
  fullname: Kudahl, Christian
BookMark eNqNkMlOwzAQhg0URFr6BFzyAgaPt9gHDlXFUqmoB5arZSdOG5omIQ7vj7tw5zIj_aNvNPON0ahpG4_QLZA7ICS715nCDDPQmGoBEmsjz9A0pixmh0ifowQkAGaM6ws0_hsIOkIJYYRinXF2hRLNOSOKSnKNpiF8EUJAioxrmqCHWVFUzTpdhLa2gy_ST98PVe5D-mq3sb61O5-umrpqfDqr121fDZtdSFfdUO1sfYMuS1sHPz31Cfp4enyfv-Dl6nkxny1xB1pJ7CzhPne6zISSgmVOCys4JwXNKQBXeenimABznpWuoKwslVZQFCLXoKRjEwTHvaHr47W-N65tt8EAMXtXJloxzMT3zUGMia4iQ49M17ffPz4Mxu-h3DdDb-t8Y7vB98FIqpgmwghlotl_QkKoDIg8Qb8ifnpE
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID FFUUA
DEWEY 511.6
DOI 10.1007/978-3-319-29516-9_6
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783319295169
3319295160
EISSN 1611-3349
Editor Lipták, Zsuzsanna
Smyth, William F
Editor_xml – sequence: 1
  fullname: Lipták, Zsuzsanna
– sequence: 2
  fullname: Smyth, William F
EndPage 76
ExternalDocumentID EBC6283905_58_83
EBC5587106_58_83
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAPIT
AAQZU
ABBVZ
ABMNI
ABOWU
ACLMJ
ADCXD
ADPGQ
AEDXK
AEJGN
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SWNTM
TPJZQ
TSXQS
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p1986-ba04ecb9f7586537b95a5440d2c21148cfbecb013be3fbd23ff8981dd5c9186b3
ISBN 3319295152
9783319295152
ISSN 0302-9743
IngestDate Tue Jul 29 20:08:11 EDT 2025
Thu May 29 16:06:48 EDT 2025
Wed May 28 23:43:36 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA76.9.M35nbsp;QA16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1986-ba04ecb9f7586537b95a5440d2c21148cfbecb013be3fbd23ff8981dd5c9186b3
Notes Supported in part by the Villum Foundation, the Stibo-Foundation, and the Danish Council for Independent Research, Natural Sciences.
OCLC 944308260
PQID EBC5587106_58_83
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_29516_9_6
proquest_ebookcentralchapters_6283905_58_83
proquest_ebookcentralchapters_5587106_58_83
PublicationCentury 2000
PublicationDate 2016
20160220
PublicationDateYYYYMMDD 2016-01-01
2016-02-20
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015, Revised Selected Papers
PublicationTitle Combinatorial Algorithms
PublicationYear 2016
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001657492
ssj0002792
Score 1.4834672
Snippet An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online...
SourceID springer
proquest
SourceType Publisher
StartPage 65
SubjectTerms Competitive Ratio
Discrete mathematics
Online Algorithm
Online Optimal
Vertex Cover
Worst-case Performance Measure
Title Adding Isolated Vertices Makes Some Online Algorithms Optimal
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5587106&ppg=83
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6283905&ppg=83
http://link.springer.com/10.1007/978-3-319-29516-9_6
Volume 9538
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbockEcWl6CQpEPnIiCkjh24gOHqmpVlrYcaKverPgRKtHdIDY9wK9n_FrvbpFQuVhJZMWOP3syM575jNC7mjFOtSryjps2r7XscjCbaa5V2UvF6kIzm418esaOL-rpFb1Kxx257JJRflC__5pX8j-owjPA1WbJ3gPZ5UvhAVwDvlACwlBuKL_rblbPKzDMwKq1NrN1eu_ffIOL8XqW3N7DLx88PR3SDPh8q7vrm8QqsJwcIWRZuxyXT9Dtzqqily7q2iyy0-47lF-Hmck8OelKg9kXEDuzMB_td5vFx5OwNXE2jC7iK4unR0RhsuptKF2AclXc8TZu-CuTy2zNPCWwvitQ4eiqB5PAG8GI8VLNeKnLLJci8dylQZL6EyTCP9kfEXNH2q8GeNhkLNsWy7lgW2gLWp-gh_uH05PL5HNjtKl5ohez5Il-l8l3yeb-LLvs2ZnS_ZKyyrMSb7S4ZqBs7Kk7VeV8Bz226SvY5pXA2D1BD8z8KdqOw4_D8D9DAWscscYRa-ywxhZr7LHGCWscsH6OLo4Ozw-O83CWRv6j5C3LZVfURkneg33IKGkkpx2tYSlWqrImsephMVufuDSkl7oifd9ysGU0VbxsmSQv0GQ-zM1LhJk0TaVqahpd1iVveN_RBhRNLUHVqfrqFcriUAi34x_CjJX_8IWgFKz0ggnaipb8szYDBZgXNNZ-H8dW2MoLEWm3ARNBBGAiHCYCMNm9T-XX6FGa72_QZPx5a_ZA3xzl2zCN_gCdfXjR
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Combinatorial+Algorithms&rft.au=Boyar%2C+Joan&rft.au=Kudahl%2C+Christian&rft.atitle=Adding+Isolated+Vertices+Makes+Some+Online+Algorithms+Optimal&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2016-02-20&rft.pub=Springer+International+Publishing&rft.isbn=9783319295152&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=65&rft.epage=76&rft_id=info:doi/10.1007%2F978-3-319-29516-9_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5587106-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6283905-l.jpg