Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation
The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that elect...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 37; pp. 20535 - 20542 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.09.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202108955 |
Cover
Abstract | The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
A detailed mechanism for cobalt‐catalyzed electrochemical 5‐hydroxymethylfurfural (HMF) oxidation is revealed. A combined experimental and theoretical study shows that a Co3+ species is capable of oxidizing the formyl group to produce carboxylate but remains inert towards oxidation of the hydroxyl group. In contrast, a Co4+ species is required for the initial oxidation of the hydroxyl group in HMF. |
---|---|
AbstractList | The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
A detailed mechanism for cobalt‐catalyzed electrochemical 5‐hydroxymethylfurfural (HMF) oxidation is revealed. A combined experimental and theoretical study shows that a Co3+ species is capable of oxidizing the formyl group to produce carboxylate but remains inert towards oxidation of the hydroxyl group. In contrast, a Co4+ species is required for the initial oxidation of the hydroxyl group in HMF. The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts. The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts. |
Author | Xu, Ge‐Yang Deng, Xiaohui Zhang, Jiujun Wang, Lei Luo, Jing‐Li Zhang, Yue‐Jiao Li, Jian‐Feng Fu, Xian‐Zhu |
Author_xml | – sequence: 1 givenname: Xiaohui surname: Deng fullname: Deng, Xiaohui organization: Shenzhen University – sequence: 2 givenname: Ge‐Yang surname: Xu fullname: Xu, Ge‐Yang organization: Xiamen University – sequence: 3 givenname: Yue‐Jiao surname: Zhang fullname: Zhang, Yue‐Jiao organization: Xiamen University – sequence: 4 givenname: Lei surname: Wang fullname: Wang, Lei organization: Shenzhen University – sequence: 5 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun organization: Shanghai University – sequence: 6 givenname: Jian‐Feng surname: Li fullname: Li, Jian‐Feng organization: Xiamen University – sequence: 7 givenname: Xian‐Zhu orcidid: 0000-0003-1843-8927 surname: Fu fullname: Fu, Xian‐Zhu email: xz.fu@szu.edu.cn organization: Shenzhen University – sequence: 8 givenname: Jing‐Li surname: Luo fullname: Luo, Jing‐Li email: jingli.luo@ualberta.ca organization: Shenzhen University |
BookMark | eNpd0ctKAzEUBuAgFWyrW9cBN4JMzaWZZJZS6gWKgrbrIZ2caso0qZmMdnY-gs_ok5iiuBAC-QMfh3D-Aeo57wChU0pGlBB2qZ2FESOMElUIcYD6VDCacSl5L-Ux55lUgh6hQdOsk1eK5H0UF85AaKJ2xrpnHF8AP_oaGuxXeFpDFYN_BgdBRzB44vkFTjKF8QW2Dj_Bntg3G7uvj8956xISKd12Jvhdt4H40tWrNqSja_yws0ZH690xOlzpuoGT33uIFtfT-eQ2mz3c3E2uZtmWFrnIcqNyw3IliV5qKSujKFcMcsE1VWpMRGVMoXMFXFdScVqt1JIul1QSTplgFR-i85-52-BfW2hiubFNBXWtHfi2KZkQXFFVUJLo2T-69m1w6XdJ5aKQapw2OETFj3q3NXTlNtiNDl1JSblvoNw3UP41UF7d303_XvwbFKaAOQ |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202108955 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 20542 |
ExternalDocumentID | ANIE202108955 |
Genre | article |
GrantInformation_xml | – fundername: shenzhen science and technology program funderid: KQTD20190929173914967 – fundername: national natural science foundation of china funderid: 21905181; 21975163 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-p1965-6d86d26870aba77cd81382e653a188405cdd9a68e3ac7831cf8b1bb17031252c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:06:17 EDT 2025 Fri Jul 25 10:16:52 EDT 2025 Wed Jan 22 16:28:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1965-6d86d26870aba77cd81382e653a188405cdd9a68e3ac7831cf8b1bb17031252c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1843-8927 |
PQID | 2565978443 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2553818910 proquest_journals_2565978443 wiley_primary_10_1002_anie_202108955_ANIE202108955 |
PublicationCentury | 2000 |
PublicationDate | September 6, 2021 |
PublicationDateYYYYMMDD | 2021-09-06 |
PublicationDate_xml | – month: 09 year: 2021 text: September 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 9 2014; 117 2005; 152 2020; 142 2019; 12 2020 2020; 59 132 1972 2020; 11 2019; 141 2013; 160 2019 2019; 58 131 2011; 133 2017; 139 2018; 24 2019; 242 2020; 8 1971; 31 2021; 13 2020; 6 1971; 33 2018; 8 2020; 4 2016 2016; 55 128 2016; 1 2014; 4 2021; 11 2020; 30 2017; 17 2018 2018; 57 130 2010; 114 2010; 132 2021 2021; 60 133 2020; 49 2018; 51 2016; 138 2020; 22 2018; 11 |
References_xml | – volume: 59 132 start-page: 15487 15615 year: 2020 2020 end-page: 15491 15620 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 9155 9253 year: 2019 2019 end-page: 9159 9257 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 9913 10067 year: 2016 2016 end-page: 9917 10071 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 242 start-page: 85 year: 2019 end-page: 91 publication-title: Appl. Catal. B – volume: 51 start-page: 1571 year: 2018 end-page: 1580 publication-title: Acc. Chem. Res. – volume: 141 start-page: 2938 year: 2019 end-page: 2948 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 18258 year: 2018 end-page: 18270 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 11460 11631 year: 2018 2018 end-page: 11464 11636 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 160 start-page: A1785 year: 2013 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 843 year: 2020 end-page: 849 publication-title: Green Chem. – volume: 12 start-page: 739 year: 2019 end-page: 746 publication-title: Energy Environ. Sci. – volume: 114 start-page: 111 year: 2010 end-page: 119 publication-title: J. Phys. Chem. C – volume: 133 start-page: 5587 year: 2011 end-page: 5593 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 13692 year: 2010 end-page: 13701 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1197 year: 2018 end-page: 1206 publication-title: ACS Catal. – start-page: 1396 year: 1972 end-page: 1403 publication-title: J. Chem. Soc. Perkin Trans. 2 – volume: 8 start-page: 5533 year: 2018 end-page: 5541 publication-title: ACS Catal. – volume: 60 133 start-page: 2 2 year: 2021 2021 end-page: 24 24 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 255 year: 2014 end-page: 262 publication-title: Electrochim. Acta – volume: 33 start-page: 478 year: 1971 end-page: 479 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 58 131 start-page: 12014 12142 year: 2019 2019 end-page: 12017 12145 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 11901 year: 2020 end-page: 11914 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 7297 7373 year: 2021 2021 end-page: 7307 7383 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 8960 year: 2017 end-page: 8970 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 13163 13347 year: 2018 2018 end-page: 13166 13350 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2974 year: 2020 end-page: 2993 publication-title: Chem – volume: 22 start-page: 1852 year: 2020 end-page: 1857 publication-title: Org. Lett. – volume: 8 start-page: 3216 year: 2018 end-page: 3232 publication-title: Catal. Sci. Technol. – volume: 142 start-page: 21538 year: 2020 end-page: 21547 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 4 year: 2020 publication-title: Adv. Sustainable Syst. – volume: 58 131 start-page: 15895 16042 year: 2019 2019 end-page: 15903 16050 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1138 year: 2020 end-page: 1146 publication-title: J. Mater. Chem. A – volume: 5 start-page: 842 year: 2017 end-page: 850 publication-title: J. Mater. Chem. A – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 1 start-page: 386 year: 2016 end-page: 390 publication-title: ACS Energy Lett. – volume: 152 start-page: C49 year: 2005 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 39 year: 1971 end-page: 49 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 138 start-page: 13639 year: 2016 end-page: 13646 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 4273 year: 2020 end-page: 4306 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 660 year: 2019 end-page: 670 publication-title: ACS Catal. – volume: 59 132 start-page: 19215 19377 year: 2020 2020 end-page: 19221 19383 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 2138 year: 2018 end-page: 2145 publication-title: ChemSusChem – volume: 17 start-page: 6040 year: 2017 end-page: 6046 publication-title: Nano Lett. – volume: 11 start-page: 2941 year: 2020 end-page: 2948 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 4594 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 2053 year: 2021 end-page: 2063 publication-title: ChemCatChem |
SSID | ssj0028806 |
Score | 2.6914158 |
Snippet | The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic... The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 20535 |
SubjectTerms | 5-hydroxymethylfurfural Catalysts Chemical reactions cobalt Electrocatalysts Electrochemical oxidation Electrochemistry Hydroxyl groups Hydroxymethylfurfural Oxidants Oxidation Oxidizing agents reaction mechanisms selective oxidation Selectivity |
Title | Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108955 https://www.proquest.com/docview/2565978443 https://www.proquest.com/docview/2553818910 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3iRS9-i6urRPAmVZs0aXpclpVVUEFd8FbyVRGlK7oF9eRP8Df6S5xJd-vqUW8pSWjTmaRvmsx7hOxZk3EnvYugnkWJZCbSJs4iWcTMA97N4gIThc_OZX-QnN6Im6ks_pofovnhhjMjrNc4wbV5PvwmDcUMbIjvIGRRmcAs85iLsE972fBHMXDOOr2I8whV6CesjUfs8Gf3H_hyGqWGz8zxItGTB6xPl9wfVCNzYN9-cTf-ZwRLZGGMQWmndpplMuPLFTLXnUi_rZLRYDrlhQJGpJdI_ESHBe3Vujm3ga4a4CrtDvk-hZZQSPbpXUmvgrROEKX4fP-4rmAhpwJK_VeHo0LN6teHonoqkPGDXrzc1bJOa2Rw3Lvu9qOxPEP0iDSEkXRKOiZhwmuj09Q6hXyGXgquYwVxo7DOZVoqz7VNFY9toUxsTIyM-Uwwy9fJbDks_Qah4BBcCSfS1LHEg90K3Et2Ulm4hShsi7Qn5snHc-w5B7AG0ZBKEt4iu001vCnc8tClH1bYRiAkAUzUIizYIn-sWTzymq-Z5WiFvLFC3jk_6TVXm3_ptEXmsRwOosk2mR09VX4bkMvI7ATv_AKLkeli |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLC4WKpTxcqTcUIHbsOEe0LFpeWwl2JW5R_AhaUWURbKTSEz-B39hf0plkEx5HenNiW4kzM843tucbgB_WJMIp7wKs50GkuAkyEyaBykPuEe8mYU6BwucD1R9FJ1eyOU1IsTA1P0S74EaWUc3XZOC0IL33zBpKIdjo4KHPohMpP8ACbdKRbR5etAxSHNWzDjASIqA89A1v4z7fe93_FcJ8iVOrH83RZzDNK9bnS252y6nZtX_esDf-1xiW4NMMhrKDWm-WYc4XX2Cx22R_W4Hp6GXUC0OYyC6I-4lNctarU-dcV4zViFhZdyJ2GLbEQrTDxgW7rLLrVHkp_j4-DUucy5nEUv_B0bAobfXDr7y8y4n0g_38Pa4zO63C6Kg37PaDWYaG4JaYCAPltHJcoc1nJotj6zRRGnolRRZqdB2ldS7JlPYis7EWoc21CY0JiTSfS27FV5gvJoVfA4Y6IbR0Mo4djzwKLqftZKe0xUfI3HZgo5FPOjOz-xTxGjpEOopEB7631filaNcjK_ykpDaSUAnCog7wShjpbU3kkdaUzTwlKaStFNKDwXGvvVp_T6dtWOwPz8_Ss-PB6Tf4SPerc2lqA-and6XfRCAzNVuVqv4DJqTtfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RkIBLWwoV29LWSL2hALFjxzmi7a4WCtsKWIlbFH9Vq1bZFd1Ipaf-hP7G_pLOJLvpwpHekthW4szYeRN73gN4b00mnPIuwnIeJYqbqDBxFqkQc494N4sDJQpfDNVglJzdyJulLP6GH6L94UYjo56vaYBPXTj6RxpKGdgY32HIojMpn8BaojDEIlh02RJIcfTOJr9IiIhk6Be0jcf86H77ewBzGabW35n-MygWT9hsL_l6WM3Mof35gLzxf7rwHJ7OQSg7abxmC1Z8-QI2ugvtt22YjZZzXhiCRHZJzE9sElivEc75UvNVI15l3Yk4YFgTD5IDNi7ZVa2tU6tS_Pn1-7rCmZxJPBrcOeoViVbffQvVbSDKD_bpx7jRddqBUb933R1Ec32GaEo8hJFyWjmucMQXpkhT6zQRGnolRRFrDByldS4rlPaisKkWsQ3axMbERJnPJbfiJayWk9LvAkOPEFo6maaOJx7tFmgx2Slt8RYy2A7sLcyTzwfZ9xzRGoZDOklEB_bbYnxTtOZRlH5SUR1JmARBUQd4bYt82tB45A1hM8_JCnlrhfxkeNprz149ptE7WP_8oZ-fnw4_voZNulxvSlN7sDq7rfwbRDEz87Z21L9xcewt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Roles+of+Electrogenerated+Co3%2B+and+Co4%2B+in+Selectivity%E2%80%90Tuned+5%E2%80%90Hydroxymethylfurfural+Oxidation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Deng%2C+Xiaohui&rft.au=Xu%2C+Ge%E2%80%90Yang&rft.au=Zhang%2C+Yue%E2%80%90Jiao&rft.au=Wang%2C+Lei&rft.date=2021-09-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=37&rft.spage=20535&rft.epage=20542&rft_id=info:doi/10.1002%2Fanie.202108955&rft.externalDBID=10.1002%252Fanie.202108955&rft.externalDocID=ANIE202108955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |