Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation

The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that elect...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 37; pp. 20535 - 20542
Main Authors Deng, Xiaohui, Xu, Ge‐Yang, Zhang, Yue‐Jiao, Wang, Lei, Zhang, Jiujun, Li, Jian‐Feng, Fu, Xian‐Zhu, Luo, Jing‐Li
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.09.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202108955

Cover

Abstract The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts. A detailed mechanism for cobalt‐catalyzed electrochemical 5‐hydroxymethylfurfural (HMF) oxidation is revealed. A combined experimental and theoretical study shows that a Co3+ species is capable of oxidizing the formyl group to produce carboxylate but remains inert towards oxidation of the hydroxyl group. In contrast, a Co4+ species is required for the initial oxidation of the hydroxyl group in HMF.
AbstractList The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts. A detailed mechanism for cobalt‐catalyzed electrochemical 5‐hydroxymethylfurfural (HMF) oxidation is revealed. A combined experimental and theoretical study shows that a Co3+ species is capable of oxidizing the formyl group to produce carboxylate but remains inert towards oxidation of the hydroxyl group. In contrast, a Co4+ species is required for the initial oxidation of the hydroxyl group in HMF.
The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5‐hydroxymethyl‐2‐furancarboxylic acid (HMFCA) and 2,5‐furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co‐catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
Author Xu, Ge‐Yang
Deng, Xiaohui
Zhang, Jiujun
Wang, Lei
Luo, Jing‐Li
Zhang, Yue‐Jiao
Li, Jian‐Feng
Fu, Xian‐Zhu
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Deng
  fullname: Deng, Xiaohui
  organization: Shenzhen University
– sequence: 2
  givenname: Ge‐Yang
  surname: Xu
  fullname: Xu, Ge‐Yang
  organization: Xiamen University
– sequence: 3
  givenname: Yue‐Jiao
  surname: Zhang
  fullname: Zhang, Yue‐Jiao
  organization: Xiamen University
– sequence: 4
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Shenzhen University
– sequence: 5
  givenname: Jiujun
  surname: Zhang
  fullname: Zhang, Jiujun
  organization: Shanghai University
– sequence: 6
  givenname: Jian‐Feng
  surname: Li
  fullname: Li, Jian‐Feng
  organization: Xiamen University
– sequence: 7
  givenname: Xian‐Zhu
  orcidid: 0000-0003-1843-8927
  surname: Fu
  fullname: Fu, Xian‐Zhu
  email: xz.fu@szu.edu.cn
  organization: Shenzhen University
– sequence: 8
  givenname: Jing‐Li
  surname: Luo
  fullname: Luo, Jing‐Li
  email: jingli.luo@ualberta.ca
  organization: Shenzhen University
BookMark eNpd0ctKAzEUBuAgFWyrW9cBN4JMzaWZZJZS6gWKgrbrIZ2caso0qZmMdnY-gs_ok5iiuBAC-QMfh3D-Aeo57wChU0pGlBB2qZ2FESOMElUIcYD6VDCacSl5L-Ux55lUgh6hQdOsk1eK5H0UF85AaKJ2xrpnHF8AP_oaGuxXeFpDFYN_BgdBRzB44vkFTjKF8QW2Dj_Bntg3G7uvj8956xISKd12Jvhdt4H40tWrNqSja_yws0ZH690xOlzpuoGT33uIFtfT-eQ2mz3c3E2uZtmWFrnIcqNyw3IliV5qKSujKFcMcsE1VWpMRGVMoXMFXFdScVqt1JIul1QSTplgFR-i85-52-BfW2hiubFNBXWtHfi2KZkQXFFVUJLo2T-69m1w6XdJ5aKQapw2OETFj3q3NXTlNtiNDl1JSblvoNw3UP41UF7d303_XvwbFKaAOQ
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202108955
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 20542
ExternalDocumentID ANIE202108955
Genre article
GrantInformation_xml – fundername: shenzhen science and technology program
  funderid: KQTD20190929173914967
– fundername: national natural science foundation of china
  funderid: 21905181; 21975163
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-p1965-6d86d26870aba77cd81382e653a188405cdd9a68e3ac7831cf8b1bb17031252c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:06:17 EDT 2025
Fri Jul 25 10:16:52 EDT 2025
Wed Jan 22 16:28:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1965-6d86d26870aba77cd81382e653a188405cdd9a68e3ac7831cf8b1bb17031252c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1843-8927
PQID 2565978443
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2553818910
proquest_journals_2565978443
wiley_primary_10_1002_anie_202108955_ANIE202108955
PublicationCentury 2000
PublicationDate September 6, 2021
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: September 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 9
2014; 117
2005; 152
2020; 142
2019; 12
2020 2020; 59 132
1972
2020; 11
2019; 141
2013; 160
2019 2019; 58 131
2011; 133
2017; 139
2018; 24
2019; 242
2020; 8
1971; 31
2021; 13
2020; 6
1971; 33
2018; 8
2020; 4
2016 2016; 55 128
2016; 1
2014; 4
2021; 11
2020; 30
2017; 17
2018 2018; 57 130
2010; 114
2010; 132
2021 2021; 60 133
2020; 49
2018; 51
2016; 138
2020; 22
2018; 11
References_xml – volume: 59 132
  start-page: 15487 15615
  year: 2020 2020
  end-page: 15491 15620
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 9155 9253
  year: 2019 2019
  end-page: 9159 9257
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 9913 10067
  year: 2016 2016
  end-page: 9917 10071
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 242
  start-page: 85
  year: 2019
  end-page: 91
  publication-title: Appl. Catal. B
– volume: 51
  start-page: 1571
  year: 2018
  end-page: 1580
  publication-title: Acc. Chem. Res.
– volume: 141
  start-page: 2938
  year: 2019
  end-page: 2948
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 18258
  year: 2018
  end-page: 18270
  publication-title: Chem. Eur. J.
– volume: 57 130
  start-page: 11460 11631
  year: 2018 2018
  end-page: 11464 11636
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 160
  start-page: A1785
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 843
  year: 2020
  end-page: 849
  publication-title: Green Chem.
– volume: 12
  start-page: 739
  year: 2019
  end-page: 746
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 111
  year: 2010
  end-page: 119
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 5587
  year: 2011
  end-page: 5593
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 13692
  year: 2010
  end-page: 13701
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1197
  year: 2018
  end-page: 1206
  publication-title: ACS Catal.
– start-page: 1396
  year: 1972
  end-page: 1403
  publication-title: J. Chem. Soc. Perkin Trans. 2
– volume: 8
  start-page: 5533
  year: 2018
  end-page: 5541
  publication-title: ACS Catal.
– volume: 60 133
  start-page: 2 2
  year: 2021 2021
  end-page: 24 24
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 255
  year: 2014
  end-page: 262
  publication-title: Electrochim. Acta
– volume: 33
  start-page: 478
  year: 1971
  end-page: 479
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 58 131
  start-page: 12014 12142
  year: 2019 2019
  end-page: 12017 12145
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 11901
  year: 2020
  end-page: 11914
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 7297 7373
  year: 2021 2021
  end-page: 7307 7383
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 8960
  year: 2017
  end-page: 8970
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 13163 13347
  year: 2018 2018
  end-page: 13166 13350
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2974
  year: 2020
  end-page: 2993
  publication-title: Chem
– volume: 22
  start-page: 1852
  year: 2020
  end-page: 1857
  publication-title: Org. Lett.
– volume: 8
  start-page: 3216
  year: 2018
  end-page: 3232
  publication-title: Catal. Sci. Technol.
– volume: 142
  start-page: 21538
  year: 2020
  end-page: 21547
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2020
  publication-title: Adv. Sustainable Syst.
– volume: 58 131
  start-page: 15895 16042
  year: 2019 2019
  end-page: 15903 16050
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1138
  year: 2020
  end-page: 1146
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 842
  year: 2017
  end-page: 850
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 386
  year: 2016
  end-page: 390
  publication-title: ACS Energy Lett.
– volume: 152
  start-page: C49
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 39
  year: 1971
  end-page: 49
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 138
  start-page: 13639
  year: 2016
  end-page: 13646
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 4273
  year: 2020
  end-page: 4306
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 660
  year: 2019
  end-page: 670
  publication-title: ACS Catal.
– volume: 59 132
  start-page: 19215 19377
  year: 2020 2020
  end-page: 19221 19383
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 2138
  year: 2018
  end-page: 2145
  publication-title: ChemSusChem
– volume: 17
  start-page: 6040
  year: 2017
  end-page: 6046
  publication-title: Nano Lett.
– volume: 11
  start-page: 2941
  year: 2020
  end-page: 2948
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 4594
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2053
  year: 2021
  end-page: 2063
  publication-title: ChemCatChem
SSID ssj0028806
Score 2.6914158
Snippet The Co‐based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5‐hydroxymethylfurfural (HMF). However, the intrinsic...
The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 20535
SubjectTerms 5-hydroxymethylfurfural
Catalysts
Chemical reactions
cobalt
Electrocatalysts
Electrochemical oxidation
Electrochemistry
Hydroxyl groups
Hydroxymethylfurfural
Oxidants
Oxidation
Oxidizing agents
reaction mechanisms
selective oxidation
Selectivity
Title Understanding the Roles of Electrogenerated Co3+ and Co4+ in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108955
https://www.proquest.com/docview/2565978443
https://www.proquest.com/docview/2553818910
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEA3iRS9-i6urRPAmVZs0aXpclpVVUEFd8FbyVRGlK7oF9eRP8Df6S5xJd-vqUW8pSWjTmaRvmsx7hOxZk3EnvYugnkWJZCbSJs4iWcTMA97N4gIThc_OZX-QnN6Im6ks_pofovnhhjMjrNc4wbV5PvwmDcUMbIjvIGRRmcAs85iLsE972fBHMXDOOr2I8whV6CesjUfs8Gf3H_hyGqWGz8zxItGTB6xPl9wfVCNzYN9-cTf-ZwRLZGGMQWmndpplMuPLFTLXnUi_rZLRYDrlhQJGpJdI_ESHBe3Vujm3ga4a4CrtDvk-hZZQSPbpXUmvgrROEKX4fP-4rmAhpwJK_VeHo0LN6teHonoqkPGDXrzc1bJOa2Rw3Lvu9qOxPEP0iDSEkXRKOiZhwmuj09Q6hXyGXgquYwVxo7DOZVoqz7VNFY9toUxsTIyM-Uwwy9fJbDks_Qah4BBcCSfS1LHEg90K3Et2Ulm4hShsi7Qn5snHc-w5B7AG0ZBKEt4iu001vCnc8tClH1bYRiAkAUzUIizYIn-sWTzymq-Z5WiFvLFC3jk_6TVXm3_ptEXmsRwOosk2mR09VX4bkMvI7ATv_AKLkeli
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RONBLC4WKpTxcqTcUIHbsOEe0LFpeWwl2JW5R_AhaUWURbKTSEz-B39hf0plkEx5HenNiW4kzM843tucbgB_WJMIp7wKs50GkuAkyEyaBykPuEe8mYU6BwucD1R9FJ1eyOU1IsTA1P0S74EaWUc3XZOC0IL33zBpKIdjo4KHPohMpP8ACbdKRbR5etAxSHNWzDjASIqA89A1v4z7fe93_FcJ8iVOrH83RZzDNK9bnS252y6nZtX_esDf-1xiW4NMMhrKDWm-WYc4XX2Cx22R_W4Hp6GXUC0OYyC6I-4lNctarU-dcV4zViFhZdyJ2GLbEQrTDxgW7rLLrVHkp_j4-DUucy5nEUv_B0bAobfXDr7y8y4n0g_38Pa4zO63C6Kg37PaDWYaG4JaYCAPltHJcoc1nJotj6zRRGnolRRZqdB2ldS7JlPYis7EWoc21CY0JiTSfS27FV5gvJoVfA4Y6IbR0Mo4djzwKLqftZKe0xUfI3HZgo5FPOjOz-xTxGjpEOopEB7631filaNcjK_ykpDaSUAnCog7wShjpbU3kkdaUzTwlKaStFNKDwXGvvVp_T6dtWOwPz8_Ss-PB6Tf4SPerc2lqA-and6XfRCAzNVuVqv4DJqTtfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RkIBLWwoV29LWSL2hALFjxzmi7a4WCtsKWIlbFH9Vq1bZFd1Ipaf-hP7G_pLOJLvpwpHekthW4szYeRN73gN4b00mnPIuwnIeJYqbqDBxFqkQc494N4sDJQpfDNVglJzdyJulLP6GH6L94UYjo56vaYBPXTj6RxpKGdgY32HIojMpn8BaojDEIlh02RJIcfTOJr9IiIhk6Be0jcf86H77ewBzGabW35n-MygWT9hsL_l6WM3Mof35gLzxf7rwHJ7OQSg7abxmC1Z8-QI2ugvtt22YjZZzXhiCRHZJzE9sElivEc75UvNVI15l3Yk4YFgTD5IDNi7ZVa2tU6tS_Pn1-7rCmZxJPBrcOeoViVbffQvVbSDKD_bpx7jRddqBUb933R1Ec32GaEo8hJFyWjmucMQXpkhT6zQRGnolRRFrDByldS4rlPaisKkWsQ3axMbERJnPJbfiJayWk9LvAkOPEFo6maaOJx7tFmgx2Slt8RYy2A7sLcyTzwfZ9xzRGoZDOklEB_bbYnxTtOZRlH5SUR1JmARBUQd4bYt82tB45A1hM8_JCnlrhfxkeNprz149ptE7WP_8oZ-fnw4_voZNulxvSlN7sDq7rfwbRDEz87Z21L9xcewt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Roles+of+Electrogenerated+Co3%2B+and+Co4%2B+in+Selectivity%E2%80%90Tuned+5%E2%80%90Hydroxymethylfurfural+Oxidation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Deng%2C+Xiaohui&rft.au=Xu%2C+Ge%E2%80%90Yang&rft.au=Zhang%2C+Yue%E2%80%90Jiao&rft.au=Wang%2C+Lei&rft.date=2021-09-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=37&rft.spage=20535&rft.epage=20542&rft_id=info:doi/10.1002%2Fanie.202108955&rft.externalDBID=10.1002%252Fanie.202108955&rft.externalDocID=ANIE202108955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon