Privacy-preserving intrusion detection in Internet of medical things neural networks using a novel recurrent U-Net auto-encoder algorithm for biomedical applications
The rapid development of Internet of Things (IoT) technology has enabled the emergence of the Internet of Medical Things (IoMT), especially in body area network applications. To protect sensitive medical data, it is essential to ensure privacy preservation and detect intrusions in this context. This...
Saved in:
| Published in | Journal of intelligent & fuzzy systems Vol. 46; no. 2; p. 4093 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Sage Publications Ltd
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-1246 1875-8967 |
| DOI | 10.3233/JIFS-234441 |
Cover
| Summary: | The rapid development of Internet of Things (IoT) technology has enabled the emergence of the Internet of Medical Things (IoMT), especially in body area network applications. To protect sensitive medical data, it is essential to ensure privacy preservation and detect intrusions in this context. This study proposes a novel intrusion detection system that protects the privacy of IoMT networks, specifically in the context of body area networks. For feature extraction, the system employs a recurrent U-Net autoencoder algorithm, which effectively captures temporal dependencies in IoMT data. In addition, privacy is protected through the combination of data anonymization techniques and data classification using Principal Component Analysis (PCA). Combining the recurrent U-Net autoencoder algorithm, privacy preservation mechanisms, and PCA-based data classification, the proposed system architecture comprises the U-Net autoencoder algorithm. The proposed method is superior to existing approaches in terms of accuracy, precision, recall, F-measure, and classification loss, as demonstrated by experimental evaluations. This research contributes to the field of privacy protection and intrusion detection in IoMT, specifically in body area network applications. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1064-1246 1875-8967 |
| DOI: | 10.3233/JIFS-234441 |