Algorithm optimization of large-scale supply chain design based on FPGA and neural network

The Supply Chain Management System permits an organization to work quickly and adequately all through a large scale. It will begin with every idea's fundamental comprehension, including Production, Inventory, Location, and Transportation. Consolidating all the cycles will underline the part of...

Full description

Saved in:
Bibliographic Details
Published inMicroprocessors and microsystems Vol. 81; p. 1
Main Author Li, Ting
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier BV 01.03.2021
Subjects
Online AccessGet full text
ISSN0141-9331
DOI10.1016/j.micpro.2020.103790

Cover

Abstract The Supply Chain Management System permits an organization to work quickly and adequately all through a large scale. It will begin with every idea's fundamental comprehension, including Production, Inventory, Location, and Transportation. Consolidating all the cycles will underline the part of SCM (Supply chain Management) in business economics. In the existing method IoT and Convolutional Neural Network for Supply Chain Management (SCM). The drawback of the previous method is un-sensitive in the supply chain in extensive scale management. The proposed method is based on FPGA (Field Programmable Gate Arrays) and Neural Network for Supply chain Management. The outcome and looking at the finished flexibly chain the executive's plan, and the administrator can operate without much of a stretch limit the mix-up and fix it in a brief period. Each organization has its own personal SCM (Supply Chain Management) plan, and the progression of the network domain will choose the system's viability. The proposed Neural Network-based Numeric Framework Algorithm long-chain centers on the SCM (Supply chain Management) framework's all-out methodology and wants to have a superior SCM (Supply Chain Management). Base on the meeting date, the current Neural Network understands the positive and negative perspectives. At last, it can address the inquiries of how to improve the network framework. The organization has a more powerful SCM (Supply chain Management. Furthermore, the significant organization improves to have the option to rival the unfamiliar creations.
AbstractList The Supply Chain Management System permits an organization to work quickly and adequately all through a large scale. It will begin with every idea's fundamental comprehension, including Production, Inventory, Location, and Transportation. Consolidating all the cycles will underline the part of SCM (Supply chain Management) in business economics. In the existing method IoT and Convolutional Neural Network for Supply Chain Management (SCM). The drawback of the previous method is un-sensitive in the supply chain in extensive scale management. The proposed method is based on FPGA (Field Programmable Gate Arrays) and Neural Network for Supply chain Management. The outcome and looking at the finished flexibly chain the executive's plan, and the administrator can operate without much of a stretch limit the mix-up and fix it in a brief period. Each organization has its own personal SCM (Supply Chain Management) plan, and the progression of the network domain will choose the system's viability. The proposed Neural Network-based Numeric Framework Algorithm long-chain centers on the SCM (Supply chain Management) framework's all-out methodology and wants to have a superior SCM (Supply Chain Management). Base on the meeting date, the current Neural Network understands the positive and negative perspectives. At last, it can address the inquiries of how to improve the network framework. The organization has a more powerful SCM (Supply chain Management. Furthermore, the significant organization improves to have the option to rival the unfamiliar creations.
Author Li, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Li
  fullname: Li, Ting
BookMark eNotj09LwzAYxnOY4Db9Bh4CnlvzJk3bHMtwczDQg168jKx526W2SW1aRD-9HXr6wcPD82dFFs47JOQOWAwM0ocm7mzZDz7mjF8kkSm2IEsGCURKCLgmqxAaxphkKV-S96Kt_WDHc0d9P9rO_ujRekd9RVs91BiFUrdIw9T37Tctz9o6ajDY2tGTDmjo7N2-7AqqnaEOp0G3M8YvP3zckKtKtwFv_7kmb9vH181TdHje7TfFIeohF2NkeKUAFBO5FNlJapMolFkFmJdcZUaByVSSVYkBmWMuMAEj5_FGYYUpzxOxJvd_ufPrzwnDeGz8NLi58siluPxPGYhfR_BV5g
ContentType Journal Article
Copyright Copyright Elsevier BV Mar 2021
Copyright_xml – notice: Copyright Elsevier BV Mar 2021
DBID 7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.micpro.2020.103790
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
7SC
7SP
8FD
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F28
F5P
FDB
FIRID
FNPLU
FR3
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
JQ2
KOM
L7M
LG9
LY7
L~C
L~D
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
ID FETCH-LOGICAL-p183t-d2f9119038537b5ad49e57f1e8c297d91d7947f4d158e83e41d5050d9efe62843
ISSN 0141-9331
IngestDate Sun Sep 07 03:48:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-d2f9119038537b5ad49e57f1e8c297d91d7947f4d158e83e41d5050d9efe62843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2533790601
PQPubID 2045426
ParticipantIDs proquest_journals_2533790601
PublicationCentury 2000
PublicationDate 20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 20210301
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Microprocessors and microsystems
PublicationYear 2021
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0005062
Score 2.2274997
Snippet The Supply Chain Management System permits an organization to work quickly and adequately all through a large scale. It will begin with every idea's...
SourceID proquest
SourceType Aggregation Database
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Design optimization
Field programmable gate arrays
Neural networks
Supply chain management
Supply chains
Title Algorithm optimization of large-scale supply chain design based on FPGA and neural network
URI https://www.proquest.com/docview/2533790601
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0141-9331
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0141-9331
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0141-9331
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0141-9331
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005062
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0141-9331
  databaseCode: AKRWK
  dateStart: 19790101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005062
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ25T8MwFMYtjoWFG3HLA2KpXGHXaeKxQhSEyjG0qGKpktjhED0gZYCBv533bLcNKkLAElVJ1Fr5pc_P9vv8EXKQBYnhWlaZkalgkmcJixMlGeQe2EFwEUvUO19cVs9a8rwdtCcufFZdMkzK6fu3upL_UIVzwBVVsn8gO_5SOAGfgS8cgTAcf8W49nTXh8H9fbfUh39-10sqMf97wgJvlgMAU8rRuPMNJb628jW3TpzQeWlcKKhfn9bsAgJubAm4eq4svJizXmDN3sAJCtCaB-_u4rm8sNs51vQ8OPi-L_RTCaJQS-Xmt8Yal5svM46cqZGsyodM57LiYx7_NhK7SYHHMrQHWggDceEE_s4c9OvG15dXnXqr0eg0T9rNw8EzQ08wXDv3BimzZF5AzEZjjvJHoYDnyNrFjhs4Ekba6r3pn53qbG0G0Vwmiz71pzXHcYXMmN4qWRrZalAfZdfI7RgrLWKl_YwWsFKHlVqs1GGlFiuFexErBVDUYaUe6zpp1U-ax2fMW2CwAcTaIdMig95I4fJtJUyCWEtlgjDjJkqFCrXiGuJpmEnNg8hEFSO5hpT2SCuTmSpkHpUNMtfr98wmoWEUp2kSQYYewxBYVlWYikqgMJ-LVRiEW2R39Hw6_h3POwJGA_DsYNS-_fPlHbIweaN2ydzw5dXsQbo2TPYttU9jEUP1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+optimization+of+large-scale+supply+chain+design+based+on+FPGA+and+neural+network&rft.jtitle=Microprocessors+and+microsystems&rft.au=Li%2C+Ting&rft.date=2021-03-01&rft.pub=Elsevier+BV&rft.issn=0141-9331&rft.volume=81&rft.spage=1&rft_id=info:doi/10.1016%2Fj.micpro.2020.103790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9331&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9331&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9331&client=summon