Robust Neural Controllers for Power System Based on New Reduced Models

This paper presents an advanced control method for the stabilization of Electric power systems. This method is a decentralized control strategy based on a set of neural controllers. Essentially, the large-scale power system is decomposed into a set of subsystems in which each one is constituted by a...

Full description

Saved in:
Bibliographic Details
Published inAdvances in electrical and electronic engineering Vol. 21; no. 2; p. 107
Main Authors Bahloul, Wissem, Chtourou, Mohamed, Mohsen Ben Ammar, Hsan Hadjabdallah
Format Journal Article
LanguageEnglish
Published Ostrava Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava 01.06.2023
Subjects
Online AccessGet full text
ISSN1336-1376
1804-3119
DOI10.15598/aeee.v21i2.4690

Cover

Abstract This paper presents an advanced control method for the stabilization of Electric power systems. This method is a decentralized control strategy based on a set of neural controllers. Essentially, the large-scale power system is decomposed into a set of subsystems in which each one is constituted by a single machine connected to a variable bus. For each subsystem, a neural controller is designed to respond to a performance index. The neural controller is a feed-forward multi-layered one. Its training method is accomplished for different rates of desired terminal voltage and is based on the perturbed electrical power system model. For a single machine, the synaptic weights of corresponding neural controller are adjusted to force the machine outputs to converge into expected one obtained by the load flow program. To evaluate the performance and effectiveness of the proposed control method, it has been applied to the WSCC power system under severe operating conditions. The obtained results compared to the ones of conventional controllers proved the high quality of the proposed controller in terms of transient stability and voltage regulation of the considered electrical power system.
AbstractList This paper presents an advanced control method for the stabilization of Electric power systems. This method is a decentralized control strategy based on a set of neural controllers. Essentially, the large-scale power system is decomposed into a set of subsystems in which each one is constituted by a single machine connected to a variable bus. For each subsystem, a neural controller is designed to respond to a performance index. The neural controller is a feed-forward multi-layered one. Its training method is accomplished for different rates of desired terminal voltage and is based on the perturbed electrical power system model. For a single machine, the synaptic weights of corresponding neural controller are adjusted to force the machine outputs to converge into expected one obtained by the load flow program. To evaluate the performance and effectiveness of the proposed control method, it has been applied to the WSCC power system under severe operating conditions. The obtained results compared to the ones of conventional controllers proved the high quality of the proposed controller in terms of transient stability and voltage regulation of the considered electrical power system.
Author Hsan Hadjabdallah
Chtourou, Mohamed
Bahloul, Wissem
Mohsen Ben Ammar
Author_xml – sequence: 1
  givenname: Wissem
  surname: Bahloul
  fullname: Bahloul, Wissem
– sequence: 2
  givenname: Mohamed
  surname: Chtourou
  fullname: Chtourou, Mohamed
– sequence: 3
  fullname: Mohsen Ben Ammar
– sequence: 4
  fullname: Hsan Hadjabdallah
BookMark eNotjctLAzEYxINUsNbePQY875rnJjnqYqtQH1Q9lzy-gGXd1GTX4n_vgs5l5gfDzDma9akHhC4pqamURl9bAKi_Gf1gtWgMOUFzqomoOKVmNmXOm4py1ZyhZSl7Mokb2Rg2R6ttcmMZ8BOM2Xa4Tf2QU9dBLjimjF_SETJ-_SkDfOJbWyDg1E_lI95CGP2EjylAVy7QabRdgeW_L9D76u6tva82z-uH9mZTHajmQ-WYFSZEpziJyrkQraXBKQMStPeeBQZgOWFURO6tUkxQa4X2AowEZQJfoKu_3UNOXyOUYbdPY-6nyx3TjdSKKSX5L-MlUcU
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7SP
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.15598/aeee.v21i2.4690
DatabaseName Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1804-3119
GroupedDBID .4S
.DC
5VS
7SP
8FD
8FE
8FG
ABJCF
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
DWQXO
EOJEC
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
L7M
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
QM1
QO4
RNS
TUS
ID FETCH-LOGICAL-p183t-b2a49dfb730f7bbdfaa1db79e5e8ccc2d2eea30214f3ca77241aa48c4e95e79d3
IEDL.DBID BENPR
ISSN 1336-1376
IngestDate Fri Jul 25 11:59:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p183t-b2a49dfb730f7bbdfaa1db79e5e8ccc2d2eea30214f3ca77241aa48c4e95e79d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2865872775?pq-origsite=%requestingapplication%&accountid=15518
PQID 2865872775
PQPubID 1616344
ParticipantIDs proquest_journals_2865872775
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Ostrava
PublicationPlace_xml – name: Ostrava
PublicationTitle Advances in electrical and electronic engineering
PublicationYear 2023
Publisher Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava
Publisher_xml – name: Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava
SSID ssj0000395692
Score 2.2478495
Snippet This paper presents an advanced control method for the stabilization of Electric power systems. This method is a decentralized control strategy based on a set...
SourceID proquest
SourceType Aggregation Database
StartPage 107
SubjectTerms Control methods
Control systems design
Controllers
Decentralized control
Electric potential
Electric power systems
Feedforward control
Multilayers
Performance evaluation
Performance indices
Robust control
Subsystems
Transient stability
Voltage
Title Robust Neural Controllers for Power System Based on New Reduced Models
URI https://www.proquest.com/docview/2865872775
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1804-3119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395692
  issn: 1336-1376
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1804-3119
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0000395692
  issn: 1336-1376
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  customDbUrl:
  eissn: 1804-3119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395692
  issn: 1336-1376
  databaseCode: BYOGL
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1804-3119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395692
  issn: 1336-1376
  databaseCode: BENPR
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1804-3119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395692
  issn: 1336-1376
  databaseCode: 8FG
  dateStart: 20020301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uOhBfOKjlj14TdvsbprkIGJLY_FQSrHQW9knCCWpNtW_72weKggeQ5Y9ZLLzzbc7-30AdwJRT6sh92IqqMdlzD3BfCSuVgvlG428qOi2mA2nS_68ClYNmNV3YVxbZZ0Ti0StM-X2yPvuBmWEYBsGD9s3z7lGudPV2kJDVNYK-r6QGGtCmzplrBa0R5PZfPG96zJgyAcKp2TkZk6AL6zPLp1QeV8YY3of1H-lPUcb_-TnAnSSYziqqkXyWIb3BBomPYXDXxqCZ5AsMrnf5cSpbODQcdl6vsGqjmA9SubOBY2UuuRkhJClSZbi4E-ycKKt-Ojc0Da7c1gmk5fx1KvMEbwtrsLck1TwWFuJK9SGUmorhK9lGJvAREopqqkxgjlFNMuUwBqa-0LwSHETByaMNbuAVpql5hIIUzoUgWRKco5zRrHUzFI7tP6A6QG1V9CpP8O6-sN36594XP__-gYOnEV72V7VgVb-vje3COS57EIzSp66VYy6BR3-AsBgoJI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4QDurB-IwP1B70uMC2XZY9ECMIAUFCCCTcsM_EhCwoi8Q_529zuuyqiYk3jptteuhMO_O1M9-H0A2HqKdkmTkB4cRhImAOpy4AV6O4dLUCXBRXW_TKrRF7HHvjDPpMe2FsWWV6JsYHtZpJe0detB2UFQi2vnc3f3WsapR9XU0lNHgiraCqMcVY0tjR0R8rgHCLavsB7H1LSLMxrLecRGXAmYM7R44gnAXKCHB14wuhDOeuEn6gPV2RUhJFtObUUosZKjkko8zlnFUk04Gn_UBRmHcL5RhlAYC_XK3R6w--b3lKFPBHrMwMWNAS_vnpW6klRi9yrXXhnbgvpGBh6p94EAe55j7aS7JTfL92pwOU0eEh2v3FWXiEmoOZWC4ibFk9YGh9Xeo-hSwSQ_6L-1Z1Da950HENQqTCsxAGr_DAksTCp1Vfmy6O0Wgjy3SCsuEs1KcIU6l87gkqBWMwZyUQihpiysYtUVUi5gzl02WYJDtqMfmx__n_v6_Rdmv41J10273OBdqx8vDr0q48ykZvS30JSUQkrhJLYfS8aef4AvTQ3n0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Neural+Controllers+for+Power+System+Based+on+New+Reduced+Models&rft.jtitle=Advances+in+electrical+and+electronic+engineering&rft.au=Bahloul%2C+Wissem&rft.au=Chtourou%2C+Mohamed&rft.au=Mohsen+Ben+Ammar&rft.au=Hsan+Hadjabdallah&rft.date=2023-06-01&rft.pub=Faculty+of+Electrical+Engineering+and+Computer+Science+VSB+-+Technical+University+of+Ostrava&rft.issn=1336-1376&rft.eissn=1804-3119&rft.volume=21&rft.issue=2&rft.spage=107&rft_id=info:doi/10.15598%2Faeee.v21i2.4690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1336-1376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1336-1376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1336-1376&client=summon