Classifying streaming of Twitter data based on sentiment analysis using hybridization
Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of un...
Saved in:
| Published in | Neural computing & applications Vol. 31; no. 5; pp. 1425 - 1433 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Springer Nature B.V
03.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-018-3476-3 |
Cover
| Abstract | Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of unwanted URLs, irrelevant messages, etc. Another hot topic of research is sentiment analysis that is based on each tweet sent by the user and opinion mining of the customer reviews. Most commonly natural language processing is used for sentiment analysis. The text is collected from user’s tweets by opinion mining and automatic sentiment analysis that are oriented with ternary classifications, such as “positive,” “neutral,” and “negative.” Due to limited size, unstructured nature, misspells, slangs, and abbreviations, it is more challenging for researchers to find sentiments for Twitter data. In this paper, we collected 600 million public tweets using URL-based security tool and feature generation is applied for sentiment analysis. The ternary classification is processed based on preprocessing technique, and the results of tweets sent by the users are obtained. We use a hybridization technique using two optimization algorithms and one machine learning classifier, namely particle swarm optimization and genetic algorithm and decision tree for classification accuracy by sentiment analysis. The results are compared with previous works, and our proposed method shows a better analysis than that of other classifiers. |
|---|---|
| AbstractList | Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of unwanted URLs, irrelevant messages, etc. Another hot topic of research is sentiment analysis that is based on each tweet sent by the user and opinion mining of the customer reviews. Most commonly natural language processing is used for sentiment analysis. The text is collected from user’s tweets by opinion mining and automatic sentiment analysis that are oriented with ternary classifications, such as “positive,” “neutral,” and “negative.” Due to limited size, unstructured nature, misspells, slangs, and abbreviations, it is more challenging for researchers to find sentiments for Twitter data. In this paper, we collected 600 million public tweets using URL-based security tool and feature generation is applied for sentiment analysis. The ternary classification is processed based on preprocessing technique, and the results of tweets sent by the users are obtained. We use a hybridization technique using two optimization algorithms and one machine learning classifier, namely particle swarm optimization and genetic algorithm and decision tree for classification accuracy by sentiment analysis. The results are compared with previous works, and our proposed method shows a better analysis than that of other classifiers. |
| Author | Senthil Murugan Nagarajan Usha Devi Gandhi |
| Author_xml | – sequence: 1 fullname: Senthil Murugan Nagarajan – sequence: 2 fullname: Usha Devi Gandhi |
| BookMark | eNotjk1LAzEYhINUsK3-AG8Bz9F8b3KU4hcUvLTn8m4-NKXdrftmkfrrbdHLzMDDDDMjk67vEiG3gt8LzpsH5NxIwbhwTOnGMnVBpkIrxRQ3bkKm3OsTtVpdkRnilnOurTNTsl7sALHkY-k-KNYhwf6c-kxX36XWNNAIFWgLmCLtO4qpq2V_Egod7I5YkI54bnwe26HE8gO19N01ucyww3Tz73Oyfn5aLV7Z8v3lbfG4ZAfhVGW6DTF6n3MM2kQnkg1tcDkLH7yS1iQhQ3ZeWAgAkGVUbYbgDfBguFVJzcnd3-5h6L_GhHWz7cfhdAw3UkrvlWhMo34B6cNXiw |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. 2019 |
| DOI | 10.1007/s00521-018-3476-3 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 1433 |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX |
| ID | FETCH-LOGICAL-p183t-4bcdd99ffdc45d81e6cbc8ff19c93265e12cf8916acaaaf2d3bfac95a0c5063e3 |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 02:49:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p183t-4bcdd99ffdc45d81e6cbc8ff19c93265e12cf8916acaaaf2d3bfac95a0c5063e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2229931757 |
| PQPubID | 2043988 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2229931757 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-03 |
| PublicationDateYYYYMMDD | 2019-05-03 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationYear | 2019 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| SSID | ssj0004685 |
| Score | 2.4631224 |
| SecondaryResourceType | retracted_publication |
| Snippet | Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 1425 |
| SubjectTerms | Abbreviations Classification Classifiers Contrarian investing Data mining Decision analysis Decision trees Digital media Genetic algorithms Machine learning Messages Natural language processing Particle swarm optimization Sentiment analysis Social networks |
| Title | Classifying streaming of Twitter data based on sentiment analysis using hybridization |
| URI | https://www.proquest.com/docview/2229931757 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6YULb8SjVHugp2grx-vH-lho0gqlAYEt5Rat17uNK3BK6wjRX8_Meu24aoWAixPZiqN4vsz7myHknZ8Y4euwYILnEKBokTAZSOwyN2PtezmYRAwUz-bRaRZ8XISLweCmzy6p80N1cy-v5H-kCudArsiS_QfJdjeFE_Ae5AtHkDAc_0rGdqNl2TCVkPQhv7se5vRnWdvd37KWIzRUBRYFkGdUuqZyN4pkY1MFq1_I23KMzL67iqM77AARXP3QJBWiUb_m3SVo4K6r8tsI5LY5B5Uxl-fySl5soZddryR2KJWjE1kVq7KfbUCCU8g8fifbiK3UWODo2DBNSjHALqpm7NKhbhRqwDkDnSL6Gtfp_bJf07bqcxw0LGhnivHD96r5prMDN7b7mAwRjAdxxPjWprV1_Pmn5TSbzZbpZJEe8OnlD4b7xrAuf8CPG0DskF0fLII3JLtHx2ezrz1WrV3o2v2qtibu2RG0t7_5jiW37kn6mDx0cQU9akDyhAx09ZQ8and2UKfCn5GshxnaYYauDXWYoYgZajFD1xXtMENbzFCLGXoLM89JNp2kH06ZW63BLkGH1yzIVVEkiTGFCsJCjHWkciWMGScKHfpQj31lBIQOUkkpjV_w3EiVhNJTITi1mr8gw2pd6ZeEgj9YQFwLukDG4P2HuQx0FMZxHgmZCMlfkb320Szdf-d6iVvkE3Rd49d_vvyGPNjCcI8M66uNfgtuYJ3vkx0xPdl3UoPX95P55y-_AfHRZvA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+streaming+of+Twitter+data+based+on+sentiment+analysis+using+hybridization&rft.jtitle=Neural+computing+%26+applications&rft.au=Senthil+Murugan+Nagarajan&rft.au=Usha+Devi+Gandhi&rft.date=2019-05-03&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=5&rft.spage=1425&rft.epage=1433&rft_id=info:doi/10.1007%2Fs00521-018-3476-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |