Classifying streaming of Twitter data based on sentiment analysis using hybridization

Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of un...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 31; no. 5; pp. 1425 - 1433
Main Authors Senthil Murugan Nagarajan, Usha Devi Gandhi
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 03.05.2019
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-018-3476-3

Cover

Abstract Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of unwanted URLs, irrelevant messages, etc. Another hot topic of research is sentiment analysis that is based on each tweet sent by the user and opinion mining of the customer reviews. Most commonly natural language processing is used for sentiment analysis. The text is collected from user’s tweets by opinion mining and automatic sentiment analysis that are oriented with ternary classifications, such as “positive,” “neutral,” and “negative.” Due to limited size, unstructured nature, misspells, slangs, and abbreviations, it is more challenging for researchers to find sentiments for Twitter data. In this paper, we collected 600 million public tweets using URL-based security tool and feature generation is applied for sentiment analysis. The ternary classification is processed based on preprocessing technique, and the results of tweets sent by the users are obtained. We use a hybridization technique using two optimization algorithms and one machine learning classifier, namely particle swarm optimization and genetic algorithm and decision tree for classification accuracy by sentiment analysis. The results are compared with previous works, and our proposed method shows a better analysis than that of other classifiers.
AbstractList Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of developing a new technique for detecting spammers become significant. Moreover, legitimate users are affected by means of spams in the form of unwanted URLs, irrelevant messages, etc. Another hot topic of research is sentiment analysis that is based on each tweet sent by the user and opinion mining of the customer reviews. Most commonly natural language processing is used for sentiment analysis. The text is collected from user’s tweets by opinion mining and automatic sentiment analysis that are oriented with ternary classifications, such as “positive,” “neutral,” and “negative.” Due to limited size, unstructured nature, misspells, slangs, and abbreviations, it is more challenging for researchers to find sentiments for Twitter data. In this paper, we collected 600 million public tweets using URL-based security tool and feature generation is applied for sentiment analysis. The ternary classification is processed based on preprocessing technique, and the results of tweets sent by the users are obtained. We use a hybridization technique using two optimization algorithms and one machine learning classifier, namely particle swarm optimization and genetic algorithm and decision tree for classification accuracy by sentiment analysis. The results are compared with previous works, and our proposed method shows a better analysis than that of other classifiers.
Author Senthil Murugan Nagarajan
Usha Devi Gandhi
Author_xml – sequence: 1
  fullname: Senthil Murugan Nagarajan
– sequence: 2
  fullname: Usha Devi Gandhi
BookMark eNotjk1LAzEYhINUsK3-AG8Bz9F8b3KU4hcUvLTn8m4-NKXdrftmkfrrbdHLzMDDDDMjk67vEiG3gt8LzpsH5NxIwbhwTOnGMnVBpkIrxRQ3bkKm3OsTtVpdkRnilnOurTNTsl7sALHkY-k-KNYhwf6c-kxX36XWNNAIFWgLmCLtO4qpq2V_Egod7I5YkI54bnwe26HE8gO19N01ucyww3Tz73Oyfn5aLV7Z8v3lbfG4ZAfhVGW6DTF6n3MM2kQnkg1tcDkLH7yS1iQhQ3ZeWAgAkGVUbYbgDfBguFVJzcnd3-5h6L_GhHWz7cfhdAw3UkrvlWhMo34B6cNXiw
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Copyright Springer Nature B.V. 2019
DOI 10.1007/s00521-018-3476-3
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1433
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
ID FETCH-LOGICAL-p183t-4bcdd99ffdc45d81e6cbc8ff19c93265e12cf8916acaaaf2d3bfac95a0c5063e3
ISSN 0941-0643
IngestDate Fri Jul 25 02:49:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-4bcdd99ffdc45d81e6cbc8ff19c93265e12cf8916acaaaf2d3bfac95a0c5063e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2229931757
PQPubID 2043988
PageCount 9
ParticipantIDs proquest_journals_2229931757
PublicationCentury 2000
PublicationDate 2019-05-03
PublicationDateYYYYMMDD 2019-05-03
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-03
  day: 03
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Neural computing & applications
PublicationYear 2019
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0004685
Score 2.4631224
SecondaryResourceType retracted_publication
Snippet Twitter is a social media that developed rapidly in today’s modern world. As millions of Twitter messages are sent day by day, the value and importance of...
SourceID proquest
SourceType Aggregation Database
StartPage 1425
SubjectTerms Abbreviations
Classification
Classifiers
Contrarian investing
Data mining
Decision analysis
Decision trees
Digital media
Genetic algorithms
Machine learning
Messages
Natural language processing
Particle swarm optimization
Sentiment analysis
Social networks
Title Classifying streaming of Twitter data based on sentiment analysis using hybridization
URI https://www.proquest.com/docview/2229931757
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6YULb8SjVHugp2grx-vH-lho0gqlAYEt5Rat17uNK3BK6wjRX8_Meu24aoWAixPZiqN4vsz7myHknZ8Y4euwYILnEKBokTAZSOwyN2PtezmYRAwUz-bRaRZ8XISLweCmzy6p80N1cy-v5H-kCudArsiS_QfJdjeFE_Ae5AtHkDAc_0rGdqNl2TCVkPQhv7se5vRnWdvd37KWIzRUBRYFkGdUuqZyN4pkY1MFq1_I23KMzL67iqM77AARXP3QJBWiUb_m3SVo4K6r8tsI5LY5B5Uxl-fySl5soZddryR2KJWjE1kVq7KfbUCCU8g8fifbiK3UWODo2DBNSjHALqpm7NKhbhRqwDkDnSL6Gtfp_bJf07bqcxw0LGhnivHD96r5prMDN7b7mAwRjAdxxPjWprV1_Pmn5TSbzZbpZJEe8OnlD4b7xrAuf8CPG0DskF0fLII3JLtHx2ezrz1WrV3o2v2qtibu2RG0t7_5jiW37kn6mDx0cQU9akDyhAx09ZQ8and2UKfCn5GshxnaYYauDXWYoYgZajFD1xXtMENbzFCLGXoLM89JNp2kH06ZW63BLkGH1yzIVVEkiTGFCsJCjHWkciWMGScKHfpQj31lBIQOUkkpjV_w3EiVhNJTITi1mr8gw2pd6ZeEgj9YQFwLukDG4P2HuQx0FMZxHgmZCMlfkb320Szdf-d6iVvkE3Rd49d_vvyGPNjCcI8M66uNfgtuYJ3vkx0xPdl3UoPX95P55y-_AfHRZvA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+streaming+of+Twitter+data+based+on+sentiment+analysis+using+hybridization&rft.jtitle=Neural+computing+%26+applications&rft.au=Senthil+Murugan+Nagarajan&rft.au=Usha+Devi+Gandhi&rft.date=2019-05-03&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=5&rft.spage=1425&rft.epage=1433&rft_id=info:doi/10.1007%2Fs00521-018-3476-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon