Self-attention generative adversarial capsule network optimized with atomic orbital search algorithm based sentiment analysis for online product recommendation

Self-Attention based Generative Adversarial Capsule Network optimized with Atomic orbital search algorithm based Sentiment Analysis is proposed in this manuscript for Online Product Recommendation (SFA-AGCN-AOSA-SA-OPR). Here, Collaborative filtering (CF) and product-product (P-P) similarity method...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 44; no. 6; p. 9347
Main Authors Sudhakaran Periakaruppan, Shanmugapriya, N, Sivan, Rajeswari
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-222537

Cover

Abstract Self-Attention based Generative Adversarial Capsule Network optimized with Atomic orbital search algorithm based Sentiment Analysis is proposed in this manuscript for Online Product Recommendation (SFA-AGCN-AOSA-SA-OPR). Here, Collaborative filtering (CF) and product-product (P-P) similarity method is utilized for designing the new recommendation system. CF is employed for predicting the best shops and P-P similarity method is employed to predict the better product. Initially, the datas are gathered via Amazon Product recommendation dataset. After that, the datas are given to pre-processing. During pre-processing, Markov chain random field (MCRF) co-simulation is used to remove the unwanted content and filtering relevant text. The preprocessing output is fed to feature extraction. The features, like manufacturing date, Manufacturing price, discounts, offers, quality ratings, and suggestions or reviews are extracted using Gray level co-occurrence matrix (GLCM) window adaptive algorithm based feature extraction method. Finally, Self-Attention based Generative Adversarial Capsule Network (SFA-AGCN) categorizes the product recommendation as excellent, good, very good, bad, very bad. Atomic orbital search algorithm optimizes the SFA-AGCN weight parameters. The performance metrics, like accuracy, precision, sensitivity, recall, F-measure, mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE) is examined. The efficiency of the proposed method provides higher mean absolute percentage error 98.23%, 88.34%, 90.35% and 78.96% and lower Mean squared error 92.15%, 90.25%, 89.64% and 92.48% compared to the existing methods, such as sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS (DLMNN-IANFIS-SA-OPR), intelligent sentiment analysis approach using edge computing based deep learning technique (DCNN-SA-OPR), sentiment analysis for online product reviews in Chinese depending on sentiment lexicon and deep learning (CNN-BiGRU-SA-OPR) and sentiment analysis on product reviews depending on weighted word embedding and deep neural networks (CNN-LSTM-SA-OPR) respectively.
AbstractList Self-Attention based Generative Adversarial Capsule Network optimized with Atomic orbital search algorithm based Sentiment Analysis is proposed in this manuscript for Online Product Recommendation (SFA-AGCN-AOSA-SA-OPR). Here, Collaborative filtering (CF) and product-product (P-P) similarity method is utilized for designing the new recommendation system. CF is employed for predicting the best shops and P-P similarity method is employed to predict the better product. Initially, the datas are gathered via Amazon Product recommendation dataset. After that, the datas are given to pre-processing. During pre-processing, Markov chain random field (MCRF) co-simulation is used to remove the unwanted content and filtering relevant text. The preprocessing output is fed to feature extraction. The features, like manufacturing date, Manufacturing price, discounts, offers, quality ratings, and suggestions or reviews are extracted using Gray level co-occurrence matrix (GLCM) window adaptive algorithm based feature extraction method. Finally, Self-Attention based Generative Adversarial Capsule Network (SFA-AGCN) categorizes the product recommendation as excellent, good, very good, bad, very bad. Atomic orbital search algorithm optimizes the SFA-AGCN weight parameters. The performance metrics, like accuracy, precision, sensitivity, recall, F-measure, mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE) is examined. The efficiency of the proposed method provides higher mean absolute percentage error 98.23%, 88.34%, 90.35% and 78.96% and lower Mean squared error 92.15%, 90.25%, 89.64% and 92.48% compared to the existing methods, such as sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS (DLMNN-IANFIS-SA-OPR), intelligent sentiment analysis approach using edge computing based deep learning technique (DCNN-SA-OPR), sentiment analysis for online product reviews in Chinese depending on sentiment lexicon and deep learning (CNN-BiGRU-SA-OPR) and sentiment analysis on product reviews depending on weighted word embedding and deep neural networks (CNN-LSTM-SA-OPR) respectively.
Author Sudhakaran Periakaruppan
Sivan, Rajeswari
Shanmugapriya, N
Author_xml – sequence: 1
  fullname: Sudhakaran Periakaruppan
– sequence: 2
  givenname: N
  surname: Shanmugapriya
  fullname: Shanmugapriya, N
– sequence: 3
  givenname: Rajeswari
  surname: Sivan
  fullname: Sivan, Rajeswari
BookMark eNotkM1OwzAMgCM0JLbBiReIxLmQn7Zpj2hiMDSJw-A8Ja0zMtqkJOkmeBlelUxwsS37k_3JMzSxzgJC15Tccsb53fNquckYYwUXZ2hKK1FkVV2KSapJmWeU5eUFmoWwJ4SKgpEp-tlApzMZI9honMU7sOBlNAfAsj2AD9Ib2eFGDmHsAFuIR-c_sBui6c03tPho4juW0fWmwc4rExMdQPomdbud82ncYyVDQsPpRp8CllZ2X8EErJ3HznbGAh68a8cmYg-N6xPVypPQJTrXsgtw9Z_n6G358Lp4ytYvj6vF_TobaMVjxkEo3rS65rQERRmtFeNlIRXlilGtCKiC5EyTohZVzkmlCWhatyAYlDSv-Rzd_O1NGp8jhLjdu9EnzbBlFaMiPayo-S_mT3F5
ContentType Journal Article
Copyright Copyright IOS Press BV 2023
Copyright_xml – notice: Copyright IOS Press BV 2023
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-222537
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
GroupedDBID .4S
.DC
4.4
5GY
7SC
8FD
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
JQ2
K1G
L7B
L7M
L~C
L~D
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
ID FETCH-LOGICAL-p183t-3e7b3cdf9316eb1219b2365ab13b21fb0eb5042f059784308f0ef19de72e61493
ISSN 1064-1246
IngestDate Fri Jul 25 10:17:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-3e7b3cdf9316eb1219b2365ab13b21fb0eb5042f059784308f0ef19de72e61493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2821700159
PQPubID 2046407
ParticipantIDs proquest_journals_2821700159
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2023
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
SSID ssj0017520
Score 2.3129232
SecondaryResourceType retracted_publication
Snippet Self-Attention based Generative Adversarial Capsule Network optimized with Atomic orbital search algorithm based Sentiment Analysis is proposed in this...
SourceID proquest
SourceType Aggregation Database
StartPage 9347
SubjectTerms Adaptive algorithms
Algorithms
Artificial neural networks
Atomic properties
Data mining
Deep learning
Edge computing
Error analysis
Feature extraction
Fields (mathematics)
Filtration
Machine learning
Manufacturing
Markov chains
Parameter sensitivity
Performance measurement
Product reviews
Recommender systems
Search algorithms
Sentiment analysis
Similarity
Title Self-attention generative adversarial capsule network optimized with atomic orbital search algorithm based sentiment analysis for online product recommendation
URI https://www.proquest.com/docview/2821700159
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdAOLiqd4FDQLurIGbE_ix7KCRqFqyyIJyi6asWfSQOK4iS3U_AwfxQ9xr2fiOC1CwMay7ChWfE_mnjtz5lxC3qZSCDfpBEzqRLNOCGcC8i4Dpg3pOtHSk5Xb52XQH3XOxt1xq_WzoVoqC_ku2fx2X8n_RBWuQVxxl-w_RLb-UrgA5xBfOEKE4fhXMR6ouWZokGkki9PKQrrSAgnss7wWVUuOREAlPFdOZhTfzhJGicVss9WdQ9WN-vjlSmL_EMdOg4j5dLmC2wsH81zq4B6lmRWkWxsTFCgaow1UeaFvrIPl9QI-le7ifZf4zmoX0KICni43mxtrKV0z_EGZXolvYoVjNL5KOC3zfAflwZXIFuVU5KvZjdhfUqrXtsRXtf4O76A5s-HzWzMbTdGSUQXuhE44VAOZYsBOrJG2uQbVF4ti0-BjO74bf0mL4-ZgHXNj9nk7i3AfZ7l7Z596A4blsHGl2ffqvvw86Y3OzyfD0_HwmPfya4aNzHDB_5h_NEi7Rw58SDVumxycXHzpX9SLW2HXNyYZ9geYbaP41PeNZ94hBxXjGT4khzZi9MTg7hFpqewxedAwsHxCfuwjkO4QSBsIpBaB1CKQ1gikiEBqEEgtAqlBIK0RSCsE0hqBdItACgikBoHUIpDuI_ApGfVOhx_6zLb8YDnkloJxFUqepDrmXgAsAtKp9HnQFdLj0ve0dJXsQprRUBSEUYe7kXaV9uJUhb4CohnzZ6SdLTP1nFDtSuBaaL7UhZI59GTiqlTwIApS7OkgXpCj7fud2P_0euJHPhpWAsd_-efbr8j9HWSPSLtYleo10NNCvrHh_gX-o6JI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-attention+generative+adversarial+capsule+network+optimized+with+atomic+orbital+search+algorithm+based+sentiment+analysis+for+online+product+recommendation&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Sudhakaran+Periakaruppan&rft.au=Shanmugapriya%2C+N&rft.au=Sivan%2C+Rajeswari&rft.date=2023-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=44&rft.issue=6&rft.spage=9347&rft_id=info:doi/10.3233%2FJIFS-222537&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon