Towards Predictability Limit: Advancing the Deterministic Skill of Ensembles

Forecasts from deterministic models are subject to uncertainties in the input data as well as the model itself. Multi-model ensemble forecasts can improve the forecast skill under certain conditions. Generally, without particular consideration of the required restrictions, the majority of the studie...

Full description

Saved in:
Bibliographic Details
Published inPerspectives on Atmospheric Sciences pp. 87 - 92
Main Author Kioutsioukis, I.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesSpringer Atmospheric Sciences
Subjects
Online AccessGet full text
ISBN9783319350943
3319350943
ISSN2194-5217
2194-5225
DOI10.1007/978-3-319-35095-0_13

Cover

Abstract Forecasts from deterministic models are subject to uncertainties in the input data as well as the model itself. Multi-model ensemble forecasts can improve the forecast skill under certain conditions. Generally, without particular consideration of the required restrictions, the majority of the studies demonstrate an increased forecast skill for the multi-model ensemble mean. We demonstrate through an intercomparison of two dissimilar air quality ensembles that unconditional raw forecast averaging, although generally successful, is far from optimum. The way to achieve an optimum ensemble is also presented. The skill gained from the proper ensemble averaging has at least the double magnitude with the skill improvement using the full ensemble. The combined skill earned from conditional ensemble averaging is comparable with the one obtained each decade as a result of the aggregated advancements in numerical prediction due to more and better assimilated observations, higher computing power and progress in our understanding of dynamics and physics.
AbstractList Forecasts from deterministic models are subject to uncertainties in the input data as well as the model itself. Multi-model ensemble forecasts can improve the forecast skill under certain conditions. Generally, without particular consideration of the required restrictions, the majority of the studies demonstrate an increased forecast skill for the multi-model ensemble mean. We demonstrate through an intercomparison of two dissimilar air quality ensembles that unconditional raw forecast averaging, although generally successful, is far from optimum. The way to achieve an optimum ensemble is also presented. The skill gained from the proper ensemble averaging has at least the double magnitude with the skill improvement using the full ensemble. The combined skill earned from conditional ensemble averaging is comparable with the one obtained each decade as a result of the aggregated advancements in numerical prediction due to more and better assimilated observations, higher computing power and progress in our understanding of dynamics and physics.
Author Kioutsioukis, I.
Author_xml – sequence: 1
  givenname: I.
  surname: Kioutsioukis
  fullname: Kioutsioukis, I.
  email: kioutio@upatras.gr
  organization: Laboratory of Atmospheric Physics, University of Patras, Rio, Greece
BookMark eNo9kMlOwzAURQ0URFv6ByzyAwY7HmKzq6AMUiSQKGvLjh1qmiYhNiD-HrcFVk-69903nAkYtV3rADjH6AIjVFzKQkACCZaQMCQZRAqTAzAhSdkJ-BCMcywpZHnOjsAs9f95lIz-PVycgLFkgomcMHkKZiG8IYRwQQoq2BiUy-5LDzZkT4Ozvora-MbH76z0Gx-vsrn91G3l29csrlx246IbNr71Ifoqe177psm6Olu0wW1M48IZOK51E9zst07By-1ieX0Py8e7h-t5Cfu0N0LOObPYIiyRwJQZQ62sC2Fkbai2lTFScyFtLTWhTiDEhXXS5rk0kiFDOJmCfD839EO6zQ3KdN06KJwgJXYqsVBEJRpqh0pt2aUQ3Yf6oXv_cCEqt01Vro2DbqqV7tNzQVFe8G0e54XCGJMfyJxvHg
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2017
Copyright_xml – notice: Springer International Publishing Switzerland 2017
DBID FFUUA
DOI 10.1007/978-3-319-35095-0_13
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISBN 3319350951
9783319350950
EISSN 2194-5225
Editor Bais, Alkiviadis
Karacostas, Theodore
Nastos, Panagiotis T
Editor_xml – sequence: 1
  fullname: Bais, Alkiviadis
– sequence: 2
  fullname: Karacostas, Theodore
– sequence: 3
  fullname: Nastos, Panagiotis T
EndPage 92
ExternalDocumentID EBC4676978_127_111
GroupedDBID 0D8
0DA
38.
AABBV
AALVI
ABMNI
ABQUB
ACRMA
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BLACP
CYFEA
CZZ
FFUUA
I4C
IEZ
JJU
MYL
SBO
SWYDZ
TPJZQ
ID FETCH-LOGICAL-p173t-6665d1d01908145bb4d9f78b9fb4adcbb9a689df9a34e80068de9d229b950b363
ISBN 9783319350943
3319350943
ISSN 2194-5217
IngestDate Tue Jul 29 19:53:07 EDT 2025
Thu May 29 17:15:35 EDT 2025
IsPeerReviewed false
IsScholarly true
LCCallNum QC851-999
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p173t-6665d1d01908145bb4d9f78b9fb4adcbb9a689df9a34e80068de9d229b950b363
OCLC 958582359
PQID EBC4676978_127_111
PageCount 6
ParticipantIDs springer_books_10_1007_978_3_319_35095_0_13
proquest_ebookcentralchapters_4676978_127_111
PublicationCentury 2000
PublicationDate 2016
2017
PublicationDateYYYYMMDD 2016-01-01
2017-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Springer Atmospheric Sciences
PublicationSeriesTitleAlternate Springer Atmospheric Sciences
PublicationTitle Perspectives on Atmospheric Sciences
PublicationYear 2016
2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
SSID ssj0001737485
ssib010698862
Score 1.821752
Snippet Forecasts from deterministic models are subject to uncertainties in the input data as well as the model itself. Multi-model ensemble forecasts can improve the...
SourceID springer
proquest
SourceType Publisher
StartPage 87
SubjectTerms Deterministic Model
EARTH SCIENCES
Ensemble Forecast
Ensemble Member
Environmental impact of natural disasters & phenomena
Error Dependence
Skill Difference
Title Towards Predictability Limit: Advancing the Deterministic Skill of Ensembles
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4676978&ppg=111
http://link.springer.com/10.1007/978-3-319-35095-0_13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYckFceIrykg9oLyujprYbm1sphdVq4cIu2lvksROpotsum3CAX8-Mm0cT9bJcrCayIsef43oe3zeMvcMT-NT5ohBykjs0UIpcgE4LYbCRqVSQQlT7_DY7vVRnV_qqK-kX2SUVvPd_D_JK_gdVvIe4Ekv2Dsi2D8Ub-BvxxRYRxnZw-O27WesiGy1NMrr859X1tiSRgJVvvtiytyBigmxJSRdh5audPvefHcMpugdjNkDDnvpUp8lEHeeT7z9X63hoXW7K_BrWec9bkAy9BY23cOBv3HN5zb_0LEyJn6gkkT15cL_dT7EgOhR11YKCZN3_SxNTb3bVvrz18uNCUZptarJkmpJBcnzzS1BVMIqe1yVSjtgRDmXE7s-XZ-c_Oh9aSuI5mig77TB3okrd9R5d8tAwe4bFIBYejxgXj9hDop1w4oPgwB-ze_nmCRt_RRi2tzH0wY_5Yr1CAyNePWXnNaC8DyiPgH7gLZwc4eQ9OHmEk28L3sL5jF1-Xl4sTkVdG0Pc4FtXAq1OHZJASgAmURpABVukBmwBygUPYN3M2FBYJ1VuiAgUchumUwtWT0DO5HM22mw3-QvGJUhwNgFrvVZy4o3DjT-AVcE47YwfM9FMURYj-HXasN9NSJkN8Buzk2YeM-peZo00NnWSGQKQRQAyAuDlHZ_-ij3o1vVrNqpuf-dv8FxYwdt6efwDj1VhTg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Perspectives+on+Atmospheric+Sciences&rft.atitle=Towards+Predictability+Limit%3A+Advancing+the+Deterministic+Skill+of+Ensembles&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319350943&rft_id=info:doi/10.1007%2F978-3-319-35095-0_13&rft.externalDBID=111&rft.externalDocID=EBC4676978_127_111
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4676978-l.jpg