Neural architecture of 3D face modelling using generative adversarial networks

3D Face modelling is not same as 2D Face image generation using DeepFake. This paper suggests a model, in solving the problem of responsive 3D face generation using less training data. By using Deep Convolutional Neural Networks (CNNs), the loss function is defined on feature maps. Optimization prob...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2707; no. 1
Main Authors Kasyap, Varanasi L. V. S. K. B., Bhagavan, V. Srinivasa
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 09.05.2023
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/5.0143020

Cover

Abstract 3D Face modelling is not same as 2D Face image generation using DeepFake. This paper suggests a model, in solving the problem of responsive 3D face generation using less training data. By using Deep Convolutional Neural Networks (CNNs), the loss function is defined on feature maps. Optimization problem is solved using Stochastic Gradient Descent (SGD). Generative Adversarial Networks (GANs) are used here to generate 3D Face Model from feature maps. The key contribution of work is finding the regional area in the given face spatial data by coalescence of two techniques and adding into feature vector. Emotional synthesizer is also proposed in the model, to make 3D face realistic by scrambling emotions on 3D Face model. Features are extracted from input data (video clips, images) using CNN and used in training Recurrent Neural Network (RNN) makes it to classify the image to be progressed or not. This model is evaluated against dataset generated with 30 people in laboratory and validates the acceptable performance and boosts up the Inception Score (IS) in 3D Face generation with contemplate limits.
AbstractList 3D Face modelling is not same as 2D Face image generation using DeepFake. This paper suggests a model, in solving the problem of responsive 3D face generation using less training data. By using Deep Convolutional Neural Networks (CNNs), the loss function is defined on feature maps. Optimization problem is solved using Stochastic Gradient Descent (SGD). Generative Adversarial Networks (GANs) are used here to generate 3D Face Model from feature maps. The key contribution of work is finding the regional area in the given face spatial data by coalescence of two techniques and adding into feature vector. Emotional synthesizer is also proposed in the model, to make 3D face realistic by scrambling emotions on 3D Face model. Features are extracted from input data (video clips, images) using CNN and used in training Recurrent Neural Network (RNN) makes it to classify the image to be progressed or not. This model is evaluated against dataset generated with 30 people in laboratory and validates the acceptable performance and boosts up the Inception Score (IS) in 3D Face generation with contemplate limits.
Author Bhagavan, V. Srinivasa
Kasyap, Varanasi L. V. S. K. B.
Author_xml – sequence: 1
  givenname: Varanasi L. V. S. K. B.
  surname: Kasyap
  fullname: Kasyap, Varanasi L. V. S. K. B.
  organization: School of Computer Science and Engineering(SCOPE), VIT-AP University
– sequence: 2
  givenname: V. Srinivasa
  surname: Bhagavan
  fullname: Bhagavan, V. Srinivasa
  organization: Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation
BookMark eNp9kE1Lw0AQhhepYFs9-A8C3oTU2e_kKPUTSr0oeFu2yWxNTbNxN6n470214M3LDMM877zDOyGjxjdIyDmFGQXFr-QMqODA4IiMqZQ01YqqERkD5CJlgr-ekEmMGwCWa52NyXKJfbB1YkPxVnVYdH3AxLuE3yTOFphsfYl1XTXrpI_7usYGg-2qHSa23GGINlSDvMHu04f3eEqOna0jnh36lLzc3T7PH9LF0_3j_HqRtlRlXWqlA7bKZFEAZqtVpliW5-Wwcg4c1aJUIITTSoKgAoXlDJ0dpkJpRK0Vn5KL37tt8B89xs5sfB-awdKwjFLOQP5Ql79ULKpueNo3pg3V1oYvs_PBSHPIyrSl-w-mYPbh_gn4N9BGbNc
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2023 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0143020
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Rao, B V Appa
Bhagavan, V S
Subrahmanyam, S V
Deevi, Sateesh Kumar
Editor_xml – sequence: 1
  givenname: B V Appa
  surname: Rao
  fullname: Rao, B V Appa
  organization: Koneru Lakshmaiah Education Foundation
– sequence: 2
  givenname: V S
  surname: Bhagavan
  fullname: Bhagavan, V S
  organization: Koneru Lakshmaiah Education Foundation
– sequence: 3
  givenname: S V
  surname: Subrahmanyam
  fullname: Subrahmanyam, S V
  organization: Koneru Lakshmaiah Education Foundation
– sequence: 4
  givenname: Sateesh Kumar
  surname: Deevi
  fullname: Deevi, Sateesh Kumar
  organization: Koneru Lakshmaiah Education Foundation
ExternalDocumentID acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p168t-a5f02b85cc0e8bb862899d168ff0f174d6044f7650414e4a32efa650c67ee7763
ISSN 0094-243X
IngestDate Mon Jun 30 04:49:44 EDT 2025
Tue Jul 04 19:18:13 EDT 2023
Fri Jun 21 00:12:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2023/2707/020040/6/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MeetingName 1ST INTERNATIONAL CONFERENCE ON ESSENCE OF MATHEMATICS AND ENGINEERING APPLICATIONS: ICEMEA 2021
MergedId FETCHMERGED-LOGICAL-p168t-a5f02b85cc0e8bb862899d168ff0f174d6044f7650414e4a32efa650c67ee7763
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
PQID 2811320576
PQPubID 2050672
PageCount 6
ParticipantIDs proquest_journals_2811320576
scitation_primary_10_1063_5_0143020
PublicationCentury 2000
PublicationDate 20230509
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 20230509
  day: 09
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Cahit, Abdulkadir (c3) 2012
References_xml – year: 2012
  ident: c3
  article-title: Design of a Face Recognition System
  publication-title: “The 15th International Conference on Machine Design and Production
SSID ssj0029778
Score 2.322513
Snippet 3D Face modelling is not same as 2D Face image generation using DeepFake. This paper suggests a model, in solving the problem of responsive 3D face generation...
SourceID proquest
scitation
SourceType Aggregation Database
Enrichment Source
Publisher
SubjectTerms Artificial neural networks
Feature maps
Generative adversarial networks
Image classification
Image processing
Modelling
Neural networks
Optimization
Recurrent neural networks
Spatial data
Three dimensional models
Training
Title Neural architecture of 3D face modelling using generative adversarial networks
URI http://dx.doi.org/10.1063/5.0143020
https://www.proquest.com/docview/2811320576
Volume 2707
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1551-7616
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0029778
  issn: 0094-243X
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbaoKrcSgE1vGSJiptb7_qxyxE1IEAhRWoi5WZ5vTa3JJDAob--Y3tfERFSuaySXStezefMw56ZD6HvSckEs_acGK054SUric7zglDrONNgofLQZ_tuJK8n_HYqpi3bW6guWRU_zN-NdSXvQRXuAa6-SvY_kG1-FG7AZ8AXroAwXF9jvNHUXNzc-8TxullsO2bZXQu-A4fvCdA9NAAnkQ083Y6NbDihLP057Bw8hFbUIadIe77mpQ7UHrOYMb62UZDGtLxWHTUnQGtZCCHP1HT3BSHeIykPJL1gICqtKBKSyVgUWavNNIt0td0F8kofgwMEQvSdUTmjKW2NTn3QPvqtribDoRpfTsdni0fi6cD8sXnFjfIRbaUMlFIPbV0M7oZ_mlga3NZoZKu3rZtGSfazmW0taPgMHkVMbuj4D-MvaK-trMT3DUg76IOdfUWfKvHsolFECneRwnOH2QB7pHCDFA5I4RYp3EEK10jtocnV5fjXNakYL8gikfmKaOFoWuTCGGrzooBoE8LhEh45Rx3EjqWknLsMvGqecMs1S63T8M3IzNoMTMU-6s3mM_sNYcmltZQbw0TB4R-pC021tFJoy6hxoo-OauGoakkvVZonvqQeYtA-Om0Ephax8YkKCQuSKaEqCW8c9TJ_akeoRekO3p7qEG23y_UI9VZPz_YYPL1VcVKh_g_7QVkq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Neural+architecture+of+3D+face+modelling+using+generative+adversarial+networks&rft.date=2023-05-09&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2707&rft.issue=1&rft_id=info:doi/10.1063%2F5.0143020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon