Microgrid energy management system for optimum energy scheduling based on combination of swarm intelligent and cuckoo search algorithm
To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control leve...
Saved in:
| Published in | AIP conference proceedings Vol. 3072; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Melville
American Institute of Physics
19.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-243X 1935-0465 1551-7616 1551-7616 |
| DOI | 10.1063/5.0198676 |
Cover
| Abstract | To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control level of a typical microgrid, an optimal scheduling mechanism is utilized to manage power generation from local DERs, energy consumption by the load, and energy drawn from the grid. This study suggests a new hybrid optimization technique for day-ahead scheduling in a smart-grid. The proposed technique employs a Hybrid Feedback Particle Swarm Optimization-Modified Cuckoo (PSO-MCS) algorithm which combines swarm intelligence and cuckoo search to improve performance and achieve a cost-effective solution for a microgrid prosumer. The PSO much like other evolutionary algorithms, initializes a swarm (a set of candidate solutions) and then searches for the best possible global optimum. This algorithm utilizes Levy flights instead of basic isotropic random-walks to enhance its performance. The standard CSA employs the following three critical rules in solving an optimization problem. To compare the performance of the Hybrid Feedback PSO-MCS algorithm with PSO and modified CS (MCS) algorithm, a comparison has been made. The algorithm is implemented in both MATLAB/Simulink and Python IDE platforms to compare their execution time. |
|---|---|
| AbstractList | To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control level of a typical microgrid, an optimal scheduling mechanism is utilized to manage power generation from local DERs, energy consumption by the load, and energy drawn from the grid. This study suggests a new hybrid optimization technique for day-ahead scheduling in a smart-grid. The proposed technique employs a Hybrid Feedback Particle Swarm Optimization-Modified Cuckoo (PSO-MCS) algorithm which combines swarm intelligence and cuckoo search to improve performance and achieve a cost-effective solution for a microgrid prosumer. The PSO much like other evolutionary algorithms, initializes a swarm (a set of candidate solutions) and then searches for the best possible global optimum. This algorithm utilizes Levy flights instead of basic isotropic random-walks to enhance its performance. The standard CSA employs the following three critical rules in solving an optimization problem. To compare the performance of the Hybrid Feedback PSO-MCS algorithm with PSO and modified CS (MCS) algorithm, a comparison has been made. The algorithm is implemented in both MATLAB/Simulink and Python IDE platforms to compare their execution time. |
| Author | Gupta, Anuj Aryan, Nakhale |
| Author_xml | – sequence: 1 givenname: Anuj surname: Gupta fullname: Gupta, Anuj organization: Department of Electronics and Communication Engineering, Chandigarh University – sequence: 2 givenname: Nakhale surname: Aryan fullname: Aryan, Nakhale organization: Department of Mechatronics Engineering, Chandigarh University |
| BookMark | eNp9kMtKxTAURYMoeH0M_IOAM6F6krZJOhTxBVecKDgraXraG22SmrTI_QG_2-sLZ472GSwWZ-89su2DR0KOGJwyEPlZeQqsUkKKLbJgZckyKZjYJguAqsh4kT_tkr2UngF4JaVakPc7a2Loo20peoz9mjrtdY8O_UTTOk3oaBciDeNk3ex-oWRW2M6D9T1tdMKWBk9NcI31erKbO3Q0venoqPUTDoPtP3Xat9TM5iUEmlBHs6J66EO008odkJ1ODwkPf3KfPF5dPlzcZMv769uL82U2MqFEJpQGIwznHFlRdVwhQNcCKhBSyVYaxTDvsMrLpmhQIMhCdMBy4NDkiCbfJyff3tmPev2mh6Eeo3U6rmsG9eeCdVn_LLiBj7_hMYbXGdNUP4c5-s1_Na-EKhXPZfGnTMZOX-3_UX4AEbiBig |
| CODEN | APCPCS |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Author(s) 2024 Author(s). Published by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published by AIP Publishing. |
| DBID | 8FD H8D L7M ADTOC UNPAY |
| DOI | 10.1063/5.0198676 |
| DatabaseName | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1551-7616 |
| Editor | Kumar, Rakesh Gupta, Meenu |
| Editor_xml | – sequence: 1 givenname: Meenu surname: Gupta fullname: Gupta, Meenu organization: Chandigarh University – sequence: 2 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh organization: Chandigarh University |
| ExternalDocumentID | 10.1063/5.0198676 acp |
| Genre | Conference Proceeding |
| GroupedDBID | -~X 23M 5GY AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACZLF ADCTM AEJMO AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN F5P FDOHQ FFFMQ HAM M71 M73 RIP RQS SJN ~02 8FD ABJGX ADMLS H8D L7M 0ZJ ADTOC J23 NEUPN RDFOP UNPAY |
| ID | FETCH-LOGICAL-p1686-68a0c6c222e149f28e00fd0e806787d7c81e3fe935b4be6e0746f013020b3eec3 |
| IEDL.DBID | UNPAY |
| ISSN | 0094-243X 1935-0465 1551-7616 |
| IngestDate | Tue Aug 19 23:20:29 EDT 2025 Mon Jun 30 04:22:04 EDT 2025 Fri Jun 21 00:10:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 0094-243X/2024/3072/030002/12/$30.00 Published by AIP Publishing. |
| LinkModel | DirectLink |
| MeetingName | INTERNATIONAL CONFERENCE ON INTELLIGENT AND SMART COMPUTATION (ICIASC-2023) |
| MergedId | FETCHMERGED-LOGICAL-p1686-68a0c6c222e149f28e00fd0e806787d7c81e3fe935b4be6e0746f013020b3eec3 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198676/19833402/030002_1_5.0198676.pdf |
| PQID | 2968582374 |
| PQPubID | 2050672 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2968582374 unpaywall_primary_10_1063_5_0198676 scitation_primary_10_1063_5_0198676 |
| PublicationCentury | 2000 |
| PublicationDate | 20240319 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 03 year: 2024 text: 20240319 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | AIP conference proceedings |
| PublicationYear | 2024 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | Li, Zhang, Zhao, Ren (c10) 2014 Kocifaj, Gangl, Kundracik, Horvath, Videen (c15) 2006 Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (c17) Kocifaj (c14) 2009 Yang, Jirutitijaroen, Walsh (c6) 2012 Yang, Kleissl (c4) 2016 Yang, Kleissl, Gueymard, Pedro, Coimbra (c16) 2018 Das, Tey (c3) 2018 Das, Stojcevski (c7) 2018 Gupta (c8) 2023 Wang, Su, Shu (c1) 2016 Fan, Wu, Zhang (c12) 2020 Bedi, Toshniwal (c11) 2019 Mi, Liu, Li (c5) 2019 Benali, Dizene (c9) 2019 Raza, Nadarajah (c13) 2016 Yang, Kleissl (c2) 2016 |
| References_xml | – start-page: 2034 year: 2020 ident: c12 article-title: Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air polluted regions publication-title: Renewable Energy – start-page: 180 year: 2016 ident: c4 article-title: Preprocessing WRF initial conditions of coastal stratocumulus forecasting publication-title: Solar Energy. – start-page: 912 year: 2018 ident: c3 article-title: Forecasting of photovoltaic power generation and model optimization: A Review publication-title: Renewable Sustainable Energy – start-page: 299 year: 2014 ident: c10 article-title: Hourly solar irradiance prediction using deep BiLSTM network publication-title: Earth Science Informatics. – start-page: 1683 year: 2006 ident: c15 article-title: Simulation of the optical properties of single composite aerosols publication-title: J. Aerosol Sci. – start-page: 1914 year: 2009 ident: c14 article-title: Sky luminance/radiance model with multiple scattering effect publication-title: Solar Energy. – start-page: 60 year: 2018 ident: c16 article-title: History and trends in solar irradiance and PV power forcasting: A preliminary assessment and review using text mining publication-title: Solar Energy. – start-page: 196 year: 2019 ident: c5 article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine publication-title: Energy Conversion Management – start-page: 871 year: 2019 ident: c9 article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components publication-title: Renewable Energy – start-page: 9 year: 2023 ident: c8 article-title: Single Step Ahead Assessment of Solar Irradiation Using Ann Model Based on Various Combination of Meterological Parameters publication-title: AIUB – start-page: 469 year: 2016 ident: c1 article-title: One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models publication-title: Renewable Energy – start-page: 912 year: 2018 ident: c7 article-title: Forecasting of photovoltaic power generation and model optimization: A Review publication-title: Renewable Sustainabe Energy Rev. – start-page: 162 ident: c17 article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation publication-title: Energy Conversion Management – start-page: 3531 year: 2012 ident: c6 article-title: Hourly solar irradiance time series forecasting using cloud cover index publication-title: Solar Energy. – start-page: 180 year: 2016 ident: c2 article-title: Preprocessing WRF initial conditions of coastal stratocumulus forecasting publication-title: Solar Energy – start-page: 125 year: 2016 ident: c13 article-title: On recent advances in PV output power forecast publication-title: Solar Energy. – start-page: 1312 year: 2019 ident: c11 article-title: Deep learning framework to forecast electricity demand publication-title: Applied Energy. |
| SSID | ssj0029778 |
| Score | 2.3516784 |
| Snippet | To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary... |
| SourceID | unpaywall proquest scitation |
| SourceType | Open Access Repository Aggregation Database Publisher |
| SubjectTerms | Algorithms Distributed generation Electrical loads Energy consumption Energy management Evolutionary algorithms Feedback Optimization techniques Particle swarm optimization Performance enhancement Power dispatch Power management Scheduling Search algorithms Smart grid Swarm intelligence |
| Title | Microgrid energy management system for optimum energy scheduling based on combination of swarm intelligent and cuckoo search algorithm |
| URI | http://dx.doi.org/10.1063/5.0198676 https://www.proquest.com/docview/2968582374 https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198676/19833402/030002_1_5.0198676.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 3072 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1551-7616 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0029778 issn: 0094-243X databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMDFljD2tnbrWEdXDrZXJY5lyc5j2VpKWUphC2RPRpZPnWn8QWJTtpe-9e_eyXbcbjDYyx6MDZKxLel8d9zdT4x9cIh28gJSbgIMueNM8shPyJBDS-o-RKlTV-C8uFTny-BiJVf9VqWuFoZeYjvRWdUhgrNqqg0d3SDyKrUPxAElpo64OY9UqKZ0EoJcoSmtWZLxeBYPbRO66ykbK0m2-oiNl5dXJ986NGXA_UCsWqCqnHHy51UXgpYu31HuMESPn_ObGfqcdFQXLqfrpqj0j1u9Xj_STmcv2N3wXW1Sys2kqZOJ-fkH8vH_ffgeO3ioHISrQSfusydYvGTP2jRTs33F7hcu_-96k6WAbdEh5EP6DXRQaSArGkr6keVNvutEHjhpRFc4D07rplAWQJJCTn07MFBa2N7qTQ7ZABitQRcpmMbclCV04gx6fV1usvp7fsCWZ6dfP57zficIXs1UpLiKtGeUIVsGyaOzfoSeZ1MPI6drwzQ00QyFRZq6JEhQodtExbYxWS8RiEa8ZqOiLPANA1R6brXy7BzJFNSOVSMjoRPyRaXjJB-yo90Ux704b2N_7jD9vgip-f0w7XHVAUHiNpCvRCzjfuip17Ag_t7r7T_1OmKjetPgO7J96uSYjU8-LT5_Oe4X8i8f3fxb |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMDFmjL6tq-OdnTjYHtV4liW7DyOsRIGLX1YIHsysnzqTOMPEpvQvvStf3dPtuNmg0Ff9mBskIxtSee74-5-YuyLQ7STF5ByE2DIHWeSR35ChhxaUvchSp26AueLSzVfBD-WctlvVepqYeglNmOdVR0iOKsm2tDRDSKvUvtEHFBi4oibs0iFakInIcgVmtCaJRmPp_HQNqa7DtihkmSrj9jh4vLq668OTRlwPxDLFqgqp5z8edWFoKXLd5Q7DNH-c_4wQ49IR3XhcrpuikrfbvVqtaedzl-x--G72qSUm3FTJ2Nz9xfy8f99-Gt2_FQ5CFeDTnzDXmDxlr1s00zN5h17uHD5f9frLAVsiw4hH9JvoINKA1nRUNKPLG_yXSfywEkjusJ5cFo3hbIAkhRy6tuBgdLCZqvXOWQDYLQGXaRgGnNTltCJM-jVdbnO6t_5MVucf__5bc77nSB4NVWR4irSnlGGbBkkj876EXqeTT2MnK4N09BEUxQWaeqSIEGFbhMV28ZkvUQgGvGejYqywBMGqPTMauXZGZIpqB2rRkZCJ-SLSsdJPmVnuymOe3HexP7MYfp9EVLz52Ha46oDgsRtIF-JWMb90FOvYUH8u9eHZ_U6Y6N63eBHsn3q5FO_gB8BRNj6xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Microgrid+energy+management+system+for+optimum+energy+scheduling+based+on+combination+of+swarm+intelligent+and+cuckoo+search+algorithm&rft.date=2024-03-19&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=3072&rft.issue=1&rft_id=info:doi/10.1063%2F5.0198676&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon |