Microgrid energy management system for optimum energy scheduling based on combination of swarm intelligent and cuckoo search algorithm

To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control leve...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 3072; no. 1
Main Authors Gupta, Anuj, Aryan, Nakhale
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 19.03.2024
Subjects
Online AccessGet full text
ISSN0094-243X
1935-0465
1551-7616
1551-7616
DOI10.1063/5.0198676

Cover

Abstract To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control level of a typical microgrid, an optimal scheduling mechanism is utilized to manage power generation from local DERs, energy consumption by the load, and energy drawn from the grid. This study suggests a new hybrid optimization technique for day-ahead scheduling in a smart-grid. The proposed technique employs a Hybrid Feedback Particle Swarm Optimization-Modified Cuckoo (PSO-MCS) algorithm which combines swarm intelligence and cuckoo search to improve performance and achieve a cost-effective solution for a microgrid prosumer. The PSO much like other evolutionary algorithms, initializes a swarm (a set of candidate solutions) and then searches for the best possible global optimum. This algorithm utilizes Levy flights instead of basic isotropic random-walks to enhance its performance. The standard CSA employs the following three critical rules in solving an optimization problem. To compare the performance of the Hybrid Feedback PSO-MCS algorithm with PSO and modified CS (MCS) algorithm, a comparison has been made. The algorithm is implemented in both MATLAB/Simulink and Python IDE platforms to compare their execution time.
AbstractList To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary whether it is grid-connected or islanded to set up a bilateral contact negotiation between suppliers and customers. At the tertiary control level of a typical microgrid, an optimal scheduling mechanism is utilized to manage power generation from local DERs, energy consumption by the load, and energy drawn from the grid. This study suggests a new hybrid optimization technique for day-ahead scheduling in a smart-grid. The proposed technique employs a Hybrid Feedback Particle Swarm Optimization-Modified Cuckoo (PSO-MCS) algorithm which combines swarm intelligence and cuckoo search to improve performance and achieve a cost-effective solution for a microgrid prosumer. The PSO much like other evolutionary algorithms, initializes a swarm (a set of candidate solutions) and then searches for the best possible global optimum. This algorithm utilizes Levy flights instead of basic isotropic random-walks to enhance its performance. The standard CSA employs the following three critical rules in solving an optimization problem. To compare the performance of the Hybrid Feedback PSO-MCS algorithm with PSO and modified CS (MCS) algorithm, a comparison has been made. The algorithm is implemented in both MATLAB/Simulink and Python IDE platforms to compare their execution time.
Author Gupta, Anuj
Aryan, Nakhale
Author_xml – sequence: 1
  givenname: Anuj
  surname: Gupta
  fullname: Gupta, Anuj
  organization: Department of Electronics and Communication Engineering, Chandigarh University
– sequence: 2
  givenname: Nakhale
  surname: Aryan
  fullname: Aryan, Nakhale
  organization: Department of Mechatronics Engineering, Chandigarh University
BookMark eNp9kMtKxTAURYMoeH0M_IOAM6F6krZJOhTxBVecKDgraXraG22SmrTI_QG_2-sLZ472GSwWZ-89su2DR0KOGJwyEPlZeQqsUkKKLbJgZckyKZjYJguAqsh4kT_tkr2UngF4JaVakPc7a2Loo20peoz9mjrtdY8O_UTTOk3oaBciDeNk3ex-oWRW2M6D9T1tdMKWBk9NcI31erKbO3Q0venoqPUTDoPtP3Xat9TM5iUEmlBHs6J66EO008odkJ1ODwkPf3KfPF5dPlzcZMv769uL82U2MqFEJpQGIwznHFlRdVwhQNcCKhBSyVYaxTDvsMrLpmhQIMhCdMBy4NDkiCbfJyff3tmPev2mh6Eeo3U6rmsG9eeCdVn_LLiBj7_hMYbXGdNUP4c5-s1_Na-EKhXPZfGnTMZOX-3_UX4AEbiBig
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2024 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1063/5.0198676
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Kumar, Rakesh
Gupta, Meenu
Editor_xml – sequence: 1
  givenname: Meenu
  surname: Gupta
  fullname: Gupta, Meenu
  organization: Chandigarh University
– sequence: 2
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
  organization: Chandigarh University
ExternalDocumentID 10.1063/5.0198676
acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
0ZJ
ADTOC
J23
NEUPN
RDFOP
UNPAY
ID FETCH-LOGICAL-p1686-68a0c6c222e149f28e00fd0e806787d7c81e3fe935b4be6e0746f013020b3eec3
IEDL.DBID UNPAY
ISSN 0094-243X
1935-0465
1551-7616
IngestDate Tue Aug 19 23:20:29 EDT 2025
Mon Jun 30 04:22:04 EDT 2025
Fri Jun 21 00:10:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2024/3072/030002/12/$30.00
Published by AIP Publishing.
LinkModel DirectLink
MeetingName INTERNATIONAL CONFERENCE ON INTELLIGENT AND SMART COMPUTATION (ICIASC-2023)
MergedId FETCHMERGED-LOGICAL-p1686-68a0c6c222e149f28e00fd0e806787d7c81e3fe935b4be6e0746f013020b3eec3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198676/19833402/030002_1_5.0198676.pdf
PQID 2968582374
PQPubID 2050672
PageCount 12
ParticipantIDs proquest_journals_2968582374
unpaywall_primary_10_1063_5_0198676
scitation_primary_10_1063_5_0198676
PublicationCentury 2000
PublicationDate 20240319
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 20240319
  day: 19
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Li, Zhang, Zhao, Ren (c10) 2014
Kocifaj, Gangl, Kundracik, Horvath, Videen (c15) 2006
Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (c17)
Kocifaj (c14) 2009
Yang, Jirutitijaroen, Walsh (c6) 2012
Yang, Kleissl (c4) 2016
Yang, Kleissl, Gueymard, Pedro, Coimbra (c16) 2018
Das, Tey (c3) 2018
Das, Stojcevski (c7) 2018
Gupta (c8) 2023
Wang, Su, Shu (c1) 2016
Fan, Wu, Zhang (c12) 2020
Bedi, Toshniwal (c11) 2019
Mi, Liu, Li (c5) 2019
Benali, Dizene (c9) 2019
Raza, Nadarajah (c13) 2016
Yang, Kleissl (c2) 2016
References_xml – start-page: 2034
  year: 2020
  ident: c12
  article-title: Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air polluted regions
  publication-title: Renewable Energy
– start-page: 180
  year: 2016
  ident: c4
  article-title: Preprocessing WRF initial conditions of coastal stratocumulus forecasting
  publication-title: Solar Energy.
– start-page: 912
  year: 2018
  ident: c3
  article-title: Forecasting of photovoltaic power generation and model optimization: A Review
  publication-title: Renewable Sustainable Energy
– start-page: 299
  year: 2014
  ident: c10
  article-title: Hourly solar irradiance prediction using deep BiLSTM network
  publication-title: Earth Science Informatics.
– start-page: 1683
  year: 2006
  ident: c15
  article-title: Simulation of the optical properties of single composite aerosols
  publication-title: J. Aerosol Sci.
– start-page: 1914
  year: 2009
  ident: c14
  article-title: Sky luminance/radiance model with multiple scattering effect
  publication-title: Solar Energy.
– start-page: 60
  year: 2018
  ident: c16
  article-title: History and trends in solar irradiance and PV power forcasting: A preliminary assessment and review using text mining
  publication-title: Solar Energy.
– start-page: 196
  year: 2019
  ident: c5
  article-title: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine
  publication-title: Energy Conversion Management
– start-page: 871
  year: 2019
  ident: c9
  article-title: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components
  publication-title: Renewable Energy
– start-page: 9
  year: 2023
  ident: c8
  article-title: Single Step Ahead Assessment of Solar Irradiation Using Ann Model Based on Various Combination of Meterological Parameters
  publication-title: AIUB
– start-page: 469
  year: 2016
  ident: c1
  article-title: One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models
  publication-title: Renewable Energy
– start-page: 912
  year: 2018
  ident: c7
  article-title: Forecasting of photovoltaic power generation and model optimization: A Review
  publication-title: Renewable Sustainabe Energy Rev.
– start-page: 162
  ident: c17
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Conversion Management
– start-page: 3531
  year: 2012
  ident: c6
  article-title: Hourly solar irradiance time series forecasting using cloud cover index
  publication-title: Solar Energy.
– start-page: 180
  year: 2016
  ident: c2
  article-title: Preprocessing WRF initial conditions of coastal stratocumulus forecasting
  publication-title: Solar Energy
– start-page: 125
  year: 2016
  ident: c13
  article-title: On recent advances in PV output power forecast
  publication-title: Solar Energy.
– start-page: 1312
  year: 2019
  ident: c11
  article-title: Deep learning framework to forecast electricity demand
  publication-title: Applied Energy.
SSID ssj0029778
Score 2.3516784
Snippet To control power dispatch and meet load demand in a microgrid made up of distributed energy sources (DERs), a power management/dispatch system is necessary...
SourceID unpaywall
proquest
scitation
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Algorithms
Distributed generation
Electrical loads
Energy consumption
Energy management
Evolutionary algorithms
Feedback
Optimization techniques
Particle swarm optimization
Performance enhancement
Power dispatch
Power management
Scheduling
Search algorithms
Smart grid
Swarm intelligence
Title Microgrid energy management system for optimum energy scheduling based on combination of swarm intelligent and cuckoo search algorithm
URI http://dx.doi.org/10.1063/5.0198676
https://www.proquest.com/docview/2968582374
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198676/19833402/030002_1_5.0198676.pdf
UnpaywallVersion publishedVersion
Volume 3072
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1551-7616
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0029778
  issn: 0094-243X
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMDFljD2tnbrWEdXDrZXJY5lyc5j2VpKWUphC2RPRpZPnWn8QWJTtpe-9e_eyXbcbjDYyx6MDZKxLel8d9zdT4x9cIh28gJSbgIMueNM8shPyJBDS-o-RKlTV-C8uFTny-BiJVf9VqWuFoZeYjvRWdUhgrNqqg0d3SDyKrUPxAElpo64OY9UqKZ0EoJcoSmtWZLxeBYPbRO66ykbK0m2-oiNl5dXJ986NGXA_UCsWqCqnHHy51UXgpYu31HuMESPn_ObGfqcdFQXLqfrpqj0j1u9Xj_STmcv2N3wXW1Sys2kqZOJ-fkH8vH_ffgeO3ioHISrQSfusydYvGTP2jRTs33F7hcu_-96k6WAbdEh5EP6DXRQaSArGkr6keVNvutEHjhpRFc4D07rplAWQJJCTn07MFBa2N7qTQ7ZABitQRcpmMbclCV04gx6fV1usvp7fsCWZ6dfP57zficIXs1UpLiKtGeUIVsGyaOzfoSeZ1MPI6drwzQ00QyFRZq6JEhQodtExbYxWS8RiEa8ZqOiLPANA1R6brXy7BzJFNSOVSMjoRPyRaXjJB-yo90Ux704b2N_7jD9vgip-f0w7XHVAUHiNpCvRCzjfuip17Ag_t7r7T_1OmKjetPgO7J96uSYjU8-LT5_Oe4X8i8f3fxb
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMDFmjL6tq-OdnTjYHtV4liW7DyOsRIGLX1YIHsysnzqTOMPEpvQvvStf3dPtuNmg0Ff9mBskIxtSee74-5-YuyLQ7STF5ByE2DIHWeSR35ChhxaUvchSp26AueLSzVfBD-WctlvVepqYeglNmOdVR0iOKsm2tDRDSKvUvtEHFBi4oibs0iFakInIcgVmtCaJRmPp_HQNqa7DtihkmSrj9jh4vLq668OTRlwPxDLFqgqp5z8edWFoKXLd5Q7DNH-c_4wQ49IR3XhcrpuikrfbvVqtaedzl-x--G72qSUm3FTJ2Nz9xfy8f99-Gt2_FQ5CFeDTnzDXmDxlr1s00zN5h17uHD5f9frLAVsiw4hH9JvoINKA1nRUNKPLG_yXSfywEkjusJ5cFo3hbIAkhRy6tuBgdLCZqvXOWQDYLQGXaRgGnNTltCJM-jVdbnO6t_5MVucf__5bc77nSB4NVWR4irSnlGGbBkkj876EXqeTT2MnK4N09BEUxQWaeqSIEGFbhMV28ZkvUQgGvGejYqywBMGqPTMauXZGZIpqB2rRkZCJ-SLSsdJPmVnuymOe3HexP7MYfp9EVLz52Ha46oDgsRtIF-JWMb90FOvYUH8u9eHZ_U6Y6N63eBHsn3q5FO_gB8BRNj6xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Microgrid+energy+management+system+for+optimum+energy+scheduling+based+on+combination+of+swarm+intelligent+and+cuckoo+search+algorithm&rft.date=2024-03-19&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=3072&rft.issue=1&rft_id=info:doi/10.1063%2F5.0198676&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon