Artificial neural networks & discrete Wavelet transform enabled healthcare model for stress and emotion assessment using speech signal recognition

Stress and emotion assessment play a pivotal role in healthcare, aiding in the early detection and prevention of various diseases. In this research paper, we propose a novel healthcare model that harnesses the power of artificial neural networks (ANN) and discrete wavelet transform (DWT) to assess s...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 3072; no. 1
Main Authors Vashishth, Tarun Kumar, Sharma, Vikas, Sharma, Kewal Krishan, Chaudhary, Sachin, Kumar, Bhupendra, Panwar, Rajneesh
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 19.03.2024
Subjects
Online AccessGet full text
ISSN0094-243X
1935-0465
1551-7616
1551-7616
DOI10.1063/5.0198725

Cover

Abstract Stress and emotion assessment play a pivotal role in healthcare, aiding in the early detection and prevention of various diseases. In this research paper, we propose a novel healthcare model that harnesses the power of artificial neural networks (ANN) and discrete wavelet transform (DWT) to assess stress and emotion through speech signal recognition. The proposed model extracts essential features from speech signals using DWT and employs ANN for the classification of stress and emotional states. Both ANN and DWT are established signal processing techniques that find applications in diverse domains. We present a comprehensive analysis of our healthcare model, which effectively analyzes speech signals to identify the stress and emotional states of individuals. The model’s performance is rigorously evaluated using a publicly available dataset comprising speech signals recorded from subjects experiencing varying stress and emotional states. Experimental results demonstrate that the proposed model achieves high accuracy and surpasses existing state-of-the-art techniques. By employing recurrent neural networks (RNN), we visualize speech’s phonetic characteristics, such as Mel-frequency cepstral coefficients (MFCCs), transforming them into sequences of phonemes or words. RNNs, designed to handle sequential data, form the basis of our speech recognition using neural networks, contributing to the model’s effectiveness and accuracy.
AbstractList Stress and emotion assessment play a pivotal role in healthcare, aiding in the early detection and prevention of various diseases. In this research paper, we propose a novel healthcare model that harnesses the power of artificial neural networks (ANN) and discrete wavelet transform (DWT) to assess stress and emotion through speech signal recognition. The proposed model extracts essential features from speech signals using DWT and employs ANN for the classification of stress and emotional states. Both ANN and DWT are established signal processing techniques that find applications in diverse domains. We present a comprehensive analysis of our healthcare model, which effectively analyzes speech signals to identify the stress and emotional states of individuals. The model’s performance is rigorously evaluated using a publicly available dataset comprising speech signals recorded from subjects experiencing varying stress and emotional states. Experimental results demonstrate that the proposed model achieves high accuracy and surpasses existing state-of-the-art techniques. By employing recurrent neural networks (RNN), we visualize speech’s phonetic characteristics, such as Mel-frequency cepstral coefficients (MFCCs), transforming them into sequences of phonemes or words. RNNs, designed to handle sequential data, form the basis of our speech recognition using neural networks, contributing to the model’s effectiveness and accuracy.
Author Sharma, Kewal Krishan
Vashishth, Tarun Kumar
Kumar, Bhupendra
Panwar, Rajneesh
Sharma, Vikas
Chaudhary, Sachin
Author_xml – sequence: 1
  givenname: Tarun Kumar
  surname: Vashishth
  fullname: Vashishth, Tarun Kumar
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
– sequence: 2
  givenname: Vikas
  surname: Sharma
  fullname: Sharma, Vikas
  email: vicky.c610@gmail.com
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
– sequence: 3
  givenname: Kewal Krishan
  surname: Sharma
  fullname: Sharma, Kewal Krishan
  email: drkks57@gmail.com
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
– sequence: 4
  givenname: Sachin
  surname: Chaudhary
  fullname: Chaudhary, Sachin
  email: sachin.chaudhary126@gmail.com
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
– sequence: 5
  givenname: Bhupendra
  surname: Kumar
  fullname: Kumar, Bhupendra
  email: singhbhupender231@gmail.com
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
– sequence: 6
  givenname: Rajneesh
  surname: Panwar
  fullname: Panwar, Rajneesh
  email: rajpanwar0710@gmail.com
  organization: School of Computer Science and Applications, IIMT University, Meerut, U.P, 222001, INDIA
BookMark eNp9kEFr3DAQhUXZQneTHvoPBIUeCk4lWbKlY1iSJhDIpSG5GVke7yq1JVcjJ-Rv9BfXmw3k1tODmY83b96GrEIMQMgXzs44q8of6oxxo2uhPpA1V4oXdcWrFVkzZmQhZPnwiWwQHxkTpq71mvw9T9n33nk70ABzepX8HNNvpN9o59ElyEDv7RMMkGlONmAf00gh2HaAju7BDnnvbAI6xg4Gumwp5gSI1IaOwhizj4FaxGU0Qsh0Rh92FCcAt6fod2E5msDFXfAH9JR87O2A8PlNT8jd5cWv7VVxc_vzent-U0y80qoQNdSl7su6da3UiqnOOVMayZQzQleylpyLlpUtt9rpXvZKiK43spU9q7SD8oR8P_rOYbIvz3YYmin50aaXhrPm0Gajmrc2F_jrEZ5S_DMD5uYxzmlJjo0wSxwtqtK8W6Lz2R6e-Y_lP8UkhaE
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2024 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1063/5.0198725
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Kumar, Rakesh
Gupta, Meenu
Editor_xml – sequence: 1
  givenname: Meenu
  surname: Gupta
  fullname: Gupta, Meenu
  organization: Chandigarh University
– sequence: 2
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
  organization: Chandigarh University
ExternalDocumentID 10.1063/5.0198725
acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
0ZJ
ADTOC
J23
NEUPN
RDFOP
UNPAY
ID FETCH-LOGICAL-p1685-27e738f37bcb48505dcc939405c9286474112b03b1a8c8f4f522df94b4f068ce3
IEDL.DBID UNPAY
ISSN 0094-243X
1935-0465
1551-7616
IngestDate Tue Aug 19 23:20:17 EDT 2025
Mon Jun 30 04:54:17 EDT 2025
Fri Jun 21 00:10:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2024/3072/020012/7/$30.00
Published by AIP Publishing.
LinkModel DirectLink
MeetingName INTERNATIONAL CONFERENCE ON INTELLIGENT AND SMART COMPUTATION (ICIASC-2023)
MergedId FETCHMERGED-LOGICAL-p1685-27e738f37bcb48505dcc939405c9286474112b03b1a8c8f4f522df94b4f068ce3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198725/19833329/020012_1_5.0198725.pdf
PQID 2968582639
PQPubID 2050672
PageCount 7
ParticipantIDs scitation_primary_10_1063_5_0198725
unpaywall_primary_10_1063_5_0198725
proquest_journals_2968582639
PublicationCentury 2000
PublicationDate 20240319
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 20240319
  day: 19
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Garg, Kapoor, Bedi, Sunkaria (c9) 2019
Zhao, Man, Smith, Siddique, Guan (c3) 2020
Muhammad, Alsulaiman, Amin, Ghoneim, Alhamid (c7) 2017; 5
Tripathi, Acharya, Sharma, Mittal, Bhattacharya (c10) 2017; 31
Hasnul, Aziz, Alelyani, Mohana, Aziz (c8) 2021; 21
Huo, Zhang, Francq, Shu, Huang (c1) 2017; 5
Schukin, Zamaraev, Schukin (c2) 2004; 18
Swangnetr, Kaber (c5); 43
Gupta, Kumar, Kumar (c6) 2022
References_xml – start-page: 1492
  year: 2022
  ident: c6
– start-page: 139
  year: 2019
  ident: c9
  article-title: Merged LSTM model for emotion classification using EEG signals
– volume: 18
  start-page: 1315
  year: 2004
  ident: c2
– volume: 21
  start-page: 5015
  year: 2021
  ident: c8
– volume: 5
  start-page: 10871
  year: 2017
  ident: c7
– volume: 31
  start-page: 4746
  year: 2017
  ident: c10
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP data
  publication-title:
– volume: 43
  start-page: 63
  ident: c5
– start-page: 1
  year: 2020
  ident: c3
– volume: 5
  start-page: 19442
  year: 2017
  ident: c1
SSID ssj0029778
Score 2.351717
Snippet Stress and emotion assessment play a pivotal role in healthcare, aiding in the early detection and prevention of various diseases. In this research paper, we...
SourceID unpaywall
proquest
scitation
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Artificial neural networks
Discrete Wavelet Transform
Emotional factors
Emotions
Health care
Model accuracy
Neural networks
Recurrent neural networks
Signal processing
Speech
Speech recognition
Wavelet transforms
Title Artificial neural networks & discrete Wavelet transform enabled healthcare model for stress and emotion assessment using speech signal recognition
URI http://dx.doi.org/10.1063/5.0198725
https://www.proquest.com/docview/2968582639
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0198725/19833329/020012_1_5.0198725.pdf
UnpaywallVersion publishedVersion
Volume 3072
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1551-7616
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0029778
  issn: 0094-243X
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9QwFA06g_jm14or63JB8S0z0-ajyeOgLou4y4IOjk8lSRN3cemWaQfRF_-Dv9ibtNNdBcEXH0oKuaVJk3JPuOeeS8gLGUN10gtqgzOUow-lqqocLXQRlA4hK3zMHT45lccr_nYt1kOp0pgLg4NoZ-ai6SWCL5q5cXj1H5E2VbhWHJBsHhU38cycizk2jLFczxeRI5SXWTn2zfCp22SKY5KLCZmuTs-Wn3ppSk5zztZJUFVkFM_zsg9Bi8h3FDsZopvv-Q2G3kUf1YfL8X5bN-bbV3N5ecM7Hd0jP8Z5JVLKl9m2szP3_Q_Jx_838ftk7zpzEM5Gn_iA3PL1Q3In0Uxd-4j8XG4SNwk3PUQlzdQkHnoLLyFmCG8QxMNHE8thdNDtUDX4lOJVwflIV4NUwwewF_p8FzB1Bb6vSgRmFByFyOz_DG3jvTuHSFfBl460qat6j6yO3nx4dUyHqhC0yaSKCXS-YCqwwjrLFQK4yjkd67sLp3MlOUKkLLcLZjOjnAo8IMKsguaWh4VUzrPHZFJf1f4JAWO01ZkVWYV2MlhtXKGtc-ijuTJG7pOD3XKXw6_dlrmOkv05Irt98nzcAmXTi4OUKagvWSnKYRnQatwcf7d6-k9WB2TSbbb-GeKgzh6S6fL1ybv3h8Om_gWcCAIu
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXthtJb0zalKUkZaMhNu2vrw9IxhIZQaMghS7YnI8lSExocs_YS2kv_Q39xRrLXSQuFXnowMmiMJUtmnpg3bwg5kDFUJ72gNjhDOfpQqqrK0UIXQekQssLH3OHPZ_J0wT8txXIoVRpzYXAQ7dRcN71E8HUzMw6v_iPSpgoPigOSzaLiJp6ZczHDhjGW69k8coTyMivHvik-9ZRs4ZjkfEK2FmfnR196aUpOc86WSVBVZBTP87IPQYvIdxQbGaLH7_kNhj5HH9WHy_F-XTfm-525uXnknU5ekJ_jvBIp5dt03dmp-_GH5OP_m_g22XnIHITz0Se-JE98_Yo8SzRT174mv45WiZuEmx6ikmZqEg-9hUOIGcIrBPFwaWI5jA66DaoGn1K8Krga6WqQavgA9kKf7wKmrsD3VYnAjIKjEJn9X6FtvHdXEOkq-NKRNnVb75DFyceL41M6VIWgTSZVTKDzBVOBFdZZrhDAVc7pWN9dOJ0ryREiZbmdM5sZ5VTgARFmFTS3PMylcp69IZP6tvZvCRijrc6syCq0k8Fq4wptnUMfzZUxcpfsbZa7HH7ttsx1lOzPEdntkg_jFiibXhykTEF9yUpRDsuAVuPm-LvVu3-y2iOTbrX2-4iDOvt-2Mz3kuMAmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Artificial+neural+networks+%26+discrete+Wavelet+transform+enabled+healthcare+model+for+stress+and+emotion+assessment+using+speech+signal+recognition&rft.au=Vashishth%2C+Tarun+Kumar&rft.au=Sharma%2C+Vikas&rft.au=Sharma%2C+Kewal+Krishan&rft.au=Chaudhary+Sachin&rft.date=2024-03-19&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=3072&rft.issue=1&rft_id=info:doi/10.1063%2F5.0198725&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon