A Deep-Learning Based Automated COVID-19 Physical Distance Measurement System Using Surveillance Video

The contagious Corona Virus (COVID-19) transmission can be reduced by following and maintaining physical distancing (also known as COVID-19 social distance). The World Health Organisation (WHO) recommends it to prevent COVID-19 from spreading in public areas. On the other hand, people may not be mai...

Full description

Saved in:
Bibliographic Details
Published inRecent Trends in Image Processing and Pattern Recognition Vol. 1576; pp. 210 - 222
Main Authors Junayed, Masum Shah, Islam, Md Baharul
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN3031070046
9783031070044
ISSN1865-0929
1865-0937
DOI10.1007/978-3-031-07005-1_19

Cover

Abstract The contagious Corona Virus (COVID-19) transmission can be reduced by following and maintaining physical distancing (also known as COVID-19 social distance). The World Health Organisation (WHO) recommends it to prevent COVID-19 from spreading in public areas. On the other hand, people may not be maintaining the required 2-m physical distance as a mandated safety precaution in shopping malls and public places. The spread of the fatal disease may be slowed by an active monitoring system suitable for identifying distances between people and alerting them. This paper introduced a deep learning-based system for automatically detecting physical distance using video from security cameras. The proposed system employed the fine-tuning YOLO v4 for object detection and classification and Deepsort for tracking the detected people using bounding boxes from the video. Pairwise L2 vectorized normalization was utilized to generate a three-dimensional feature space for tracking physical distances and the violation index, determining the number of individuals who follow the distance rules. For training and testing, we use the MS COCO and Oxford Town Centre (OTC) datasets. We compared the proposed system to two well-known object detection models, YOLO v3 and Faster RCNN. Our method obtained a weighted mAP score of 87.8% and an FPS score of 28; both are computationally comparable.
AbstractList The contagious Corona Virus (COVID-19) transmission can be reduced by following and maintaining physical distancing (also known as COVID-19 social distance). The World Health Organisation (WHO) recommends it to prevent COVID-19 from spreading in public areas. On the other hand, people may not be maintaining the required 2-m physical distance as a mandated safety precaution in shopping malls and public places. The spread of the fatal disease may be slowed by an active monitoring system suitable for identifying distances between people and alerting them. This paper introduced a deep learning-based system for automatically detecting physical distance using video from security cameras. The proposed system employed the fine-tuning YOLO v4 for object detection and classification and Deepsort for tracking the detected people using bounding boxes from the video. Pairwise L2 vectorized normalization was utilized to generate a three-dimensional feature space for tracking physical distances and the violation index, determining the number of individuals who follow the distance rules. For training and testing, we use the MS COCO and Oxford Town Centre (OTC) datasets. We compared the proposed system to two well-known object detection models, YOLO v3 and Faster RCNN. Our method obtained a weighted mAP score of 87.8% and an FPS score of 28; both are computationally comparable.
Author Islam, Md Baharul
Junayed, Masum Shah
Author_xml – sequence: 1
  givenname: Masum Shah
  orcidid: 0000-0003-3592-4601
  surname: Junayed
  fullname: Junayed, Masum Shah
  email: masumshahjunayed@gmail.com
– sequence: 2
  givenname: Md Baharul
  orcidid: 0000-0002-9928-5776
  surname: Islam
  fullname: Islam, Md Baharul
BookMark eNpFkN1OwzAMhQMMBBu8ARd9gYCTNE19OTb-pKEhAbuN0taFQteWpkPa29MOBBeWLdvnyP7GbFTVFTF2LuBCAJhLNDFXHJTgYAA0F1bgHhurvrNrhPvsRMSR5oDKHPwPwmj0N5B4xMZCCYwlYgjH7Mz7dwCQRhpl8ITl02BO1PAFubYqqtfgynnKgummq9eu66vZcnU_5wKDx7etL1JXBvPCd65KKXgg5zctranqgqet72gdvPjB42nTflFRlrutVZFRfcoOc1d6OvvNE_Zyc_08u-OL5e39bLrgjdAxcoJQJ84IKVyeQaa01OASY0SSmEgjxkASjUxDl8sMHElIHFKKGlUoM9JqwuSPr2_a_hJqbVLXH94KsANT2zO1yvag7A6hHZj2ovBH1LT154Z8Z2lQpf1frSvTN9d01HobIUYqNlZK6EOob1GOdiw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 621.367
DOI 10.1007/978-3-031-07005-1_19
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
Computer Science
EISBN 3031070054
9783031070051
EISSN 1865-0937
Editor Hegadi, Ravindra
Pal, Umapada
Santosh, K. C
Editor_xml – sequence: 1
  fullname: Santosh, K. C
– sequence: 2
  fullname: Pal, Umapada
– sequence: 3
  fullname: Hegadi, Ravindra
EndPage 222
ExternalDocumentID EBC6996387_220_221
GroupedDBID 38.
9-X
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SNUHX
TPJZQ
Z7R
Z7U
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
AJIEK
ID FETCH-LOGICAL-p1589-e045ba7121afd0d35250ab771bb7659980e2972c4af2d0ae20ba9ec959342de53
ISBN 3031070046
9783031070044
ISSN 1865-0929
IngestDate Tue Jul 29 20:26:08 EDT 2025
Tue Apr 22 22:51:32 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA1501-1820
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1589-e045ba7121afd0d35250ab771bb7659980e2972c4af2d0ae20ba9ec959342de53
OCLC 1319829940
ORCID 0000-0002-9928-5776
0000-0003-3592-4601
PQID EBC6996387_220_221
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_031_07005_1_19
proquest_ebookcentralchapters_6996387_220_221
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle 4th International Conference, RTIP2R 2021, Msida, Malta, December 8-10, 2021, Revised Selected Papers
PublicationTitle Recent Trends in Image Processing and Pattern Recognition
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhou, Lizhu
Filipe, Joaquim
Ghosh, Ashish
Prates, Raquel Oliveira
RelatedPersons_xml – sequence: 1
  givenname: Joaquim
  orcidid: 0000-0002-5961-6606
  surname: Filipe
  fullname: Filipe, Joaquim
– sequence: 2
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
– sequence: 3
  givenname: Raquel Oliveira
  orcidid: 0000-0002-7128-4974
  surname: Prates
  fullname: Prates, Raquel Oliveira
– sequence: 4
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
SSID ssj0002727379
ssj0000580895
ssib054953581
Score 1.6528174
Snippet The contagious Corona Virus (COVID-19) transmission can be reduced by following and maintaining physical distancing (also known as COVID-19 social distance)....
SourceID springer
proquest
SourceType Publisher
StartPage 210
SubjectTerms COVID-19 Social distancing
Crowd monitoring
Distance measurement
Human detection and tracking
Video surveillance
Title A Deep-Learning Based Automated COVID-19 Physical Distance Measurement System Using Surveillance Video
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6996387&ppg=221
http://link.springer.com/10.1007/978-3-031-07005-1_19
Volume 1576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCuSAOvEV5yQdukZHX-_QxhaI2agCJNupt5bW9apFIqjwqld_FD2TGj-wm7aUcsoqsVdbr-TIej7_5TMhHblAxptVMigYWKE2jWFVUluk251oUrUmdqM_kW3F0lo3P8_PB4G-PtbReNZ_0nzvrSv7HqtAGdsUq2XtYdvOj0ADfwb5wBQvDdSf43U6zBolYJFYOO1Lr8W_Hv_HM_1h7-MPpZ2KaPhCFum338Xqmbnyuc6Kg2yjefHELKhMzPFAXahEJhIHbDI7KXrGTmFg5gMnQDEfr1RwiYEwaf58ef2GJdGfrBN-KcSh6kS4rGfTSh5638HO9uLZ4CBLeNb00du5dHkoxL7crWZa-WNEfSBEozZsyzOiv-gkNIXYSGjGhuZMS7bJyWyvgFKVNUaI_6znxqsgZlyGTYvttXmBm46x5b94Xvj761pTSZ5HAwxg-LWdJjVqzD8oSvOrD0eH4ZBq9WI6M3Sgq5xXmK16F6udfbqsXQkYnArnpKBYdxRcpvCxU92K9gs-7erG1NNrZzXdB0ulT8hgLZyhWtMCQPiMDO3tOnoRlDg1GWUJTNFxse0HaEd3CE3V4ohs80YgnGvFEI55oD0_U44k6PNE-nqjD00ty9vXw9PMRCyeAsKskrySzsOBoVJmIRLWGG5Tu5aopy6RpyiKXsuJWyFLoTLXCcGUFb5S0GsW2M2Fsnr4ie7P5zL5GCh8EvyZVhTZJVkotNQSyTVLklnOd6XSfsDiMteMpBHK09oO2rAuJc1VZC8Hhk-yTYRzrGm9f1lEAHIxUpzUYqXZGqtFIb-5191vyqPtjvCN7q8XavofYd9V8CGD7B5TCpS8
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recent+Trends+in+Image+Processing+and+Pattern+Recognition&rft.au=Junayed%2C+Masum+Shah&rft.au=Islam%2C+Md+Baharul&rft.atitle=A+Deep-Learning+Based+Automated+COVID-19+Physical+Distance+Measurement+System+Using+Surveillance+Video&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031070044&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=210&rft.epage=222&rft_id=info:doi/10.1007%2F978-3-031-07005-1_19
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6996387-l.jpg