A Survey on Deep Learning for Time-Series Forecasting

Deep learning, one of the most remarkable techniques of machine learning, has been a major success in many fields, including image processing, speech recognition, and text understanding. It is powerful engines capable of learning arbitrary mapping functions, not require a scaled or stationary time s...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges Vol. 77; pp. 365 - 392
Main Authors Mahmoud, Amal, Mohammed, Ammar
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesStudies in Big Data
Subjects
Online AccessGet full text
ISBN3030593371
9783030593377
ISSN2197-6503
2197-6511
DOI10.1007/978-3-030-59338-4_19

Cover

Abstract Deep learning, one of the most remarkable techniques of machine learning, has been a major success in many fields, including image processing, speech recognition, and text understanding. It is powerful engines capable of learning arbitrary mapping functions, not require a scaled or stationary time series as input, support multivariate inputs, and support multi-step outputs. All of these features together make deep learning useful tools when dealing with more complex time series prediction problems involving large amounts of data, and multiple variables with complex relationships. This paper provides an overview of the most common Deep Learning types for time series forecasting, Explain the relationships between deep learning models and classical approaches to time series forecasting. A brief background of the particular challenges presents in time-series data and the most common deep learning techniques that are often used for time series forecasting is provided. Previous studies that applied deep learning to time series are reviewed.
AbstractList Deep learning, one of the most remarkable techniques of machine learning, has been a major success in many fields, including image processing, speech recognition, and text understanding. It is powerful engines capable of learning arbitrary mapping functions, not require a scaled or stationary time series as input, support multivariate inputs, and support multi-step outputs. All of these features together make deep learning useful tools when dealing with more complex time series prediction problems involving large amounts of data, and multiple variables with complex relationships. This paper provides an overview of the most common Deep Learning types for time series forecasting, Explain the relationships between deep learning models and classical approaches to time series forecasting. A brief background of the particular challenges presents in time-series data and the most common deep learning techniques that are often used for time series forecasting is provided. Previous studies that applied deep learning to time series are reviewed.
Author Mahmoud, Amal
Mohammed, Ammar
Author_xml – sequence: 1
  givenname: Amal
  surname: Mahmoud
  fullname: Mahmoud, Amal
  email: amal.mahmoud@pg.cu.edu.eg
– sequence: 2
  givenname: Ammar
  surname: Mohammed
  fullname: Mohammed, Ammar
BookMark eNo9kMFOAjEQhquiEZA38MALVNtOt90eCYqakHgAz03bnVUUd9d2NfFteBaezAXU0yT_n28m8w1Ir6orJOSSsyvOmL42OqdAGTCaGYCcSsvNERl1MXThPpPHpC-40VRlnJ-QwV-hee-_YHBGBlwIDbkGlZ-TUUqvjDEhheRK9kk-2W4Wn_ELv8d1td3cIDbjObpYrarncVnH7Wa5eke6wLjCNJ7VEYNLbVdekNPSrROOfueQPM1ul9N7On-8e5hO5rThWW6oD94E5AU4CEHmrvAlFGC0BilLDFpKkyMrM69k8JLJQmfOFxox46X2QcOQiMPe1MTuLEbr6_otWc7sTpTtjFiw3et2L8XuRHWQPEBNrD8-MbUWd1TAqo1uHV5c02JMVkmRKc6tkNqCUvADlUFqrA
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006.31
DOI 10.1007/978-3-030-59338-4_19
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030593384
303059338X
EISSN 2197-6511
Editor Hassanien, Aboul Ella
Darwish, Ashraf
Editor_xml – sequence: 1
  fullname: Darwish, Ashraf
– sequence: 2
  fullname: Hassanien, Aboul Ella
EndPage 392
ExternalDocumentID EBC6425611_247_366
GroupedDBID 38.
AABBV
AABLV
AALIM
ABNDO
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ARRAB
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
WZT
Z7R
Z81
Z83
Z88
ID FETCH-LOGICAL-p1589-bcb9ce1d3a3cc48adbf3d3977344fec74498e0f5b64cb404d75abd7ee51f7bc73
ISBN 3030593371
9783030593377
ISSN 2197-6503
IngestDate Tue Jul 29 20:36:37 EDT 2025
Tue Oct 21 09:22:50 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA345-345.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1589-bcb9ce1d3a3cc48adbf3d3977344fec74498e0f5b64cb404d75abd7ee51f7bc73
OCLC 1227387368
PQID EBC6425611_247_366
PageCount 28
ParticipantIDs springer_books_10_1007_978_3_030_59338_4_19
proquest_ebookcentralchapters_6425611_247_366
PublicationCentury 2000
PublicationDate 2020
2021
PublicationDateYYYYMMDD 2020-01-01
2021-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Studies in Big Data
PublicationSeriesTitleAlternate Studies in Big Data
PublicationTitle Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
PublicationYear 2020
2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kacprzyk, Janusz
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
SSID ssj0002424164
ssib016745702
Score 1.9592007
Snippet Deep learning, one of the most remarkable techniques of machine learning, has been a major success in many fields, including image processing, speech...
SourceID springer
proquest
SourceType Publisher
StartPage 365
SubjectTerms Deep learning
Time series
Title A Survey on Deep Learning for Time-Series Forecasting
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6425611&ppg=366
http://link.springer.com/10.1007/978-3-030-59338-4_19
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbockEcylOUl3Kgp8ooie08jumyUFWAkGhRb5btOFUP3S6btAd-zf6W_WXMOHY3G3opl2hj5eGdzxnPjP3NEPLBqhQmkaTGVIgWHBSV0TJWnDYZF0lTYywHA_rfvmdHp_z4TJxtKASOXdLpj-bPnbyS_0EV2gBXZMneA9nbh0ID_AZ84QgIw3Fk_G6HWX2FIdwGaUOG1J5qeHhxDkB2qk824lIw_1BLVV-cX7Z9DLDPQeJUwmDt2t08DYVV2uFAqvan6X4V_7xe3oD-AEvRnX6ydrF5NVi-fTMySihG3Gx7gFU_jWq7MDn62EIaj2ILIbY4ik4OAmTVly1_lKH6KBnzlVm8gu3P_tHVw-0ZcB_FGwvKpVehW6mxWTbKl-1m4NnhFNwnsAATmfJc4kWL3xQriuHKuy-vskN2oGMT8rCaHX_9dRt_Q1oMuIpI9wmdTvqETJs_MaBa3tXNLadktI7uzJOTJ-QxUlYi5JJAx5-SB3b-jOx6ByPy6ruFplDDI7Q9J0W1XvXQRlfz9QphjQKsEcC6Xg0gjQaQviCnn2cn0yPqq2nQRSKKkmqjS2OTmilmDC9UrRtWo_nPOG-syTkvCxs3QmfcaB7zOhdK17m18M3m2uTsJZnMr-b2FYnAhG1EUqdGKMHLJoXvHUwcW4rGoj1b7hEaBCPdmr_faGx6MbRyhNoeOQjSk3h5K0MybRC7ZBLELp3YJYr99T2f_oY82oztt2TSLa_tO7AkO_3eD4q_1R9vpw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Big+Data+Analytics+Paradigms%3A+Analysis%2C+Applications+and+Challenges&rft.atitle=A%C2%A0Survey+on%C2%A0Deep+Learning+for%C2%A0Time-Series+Forecasting&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030593377&rft.volume=77&rft_id=info:doi/10.1007%2F978-3-030-59338-4_19&rft.externalDBID=366&rft.externalDocID=EBC6425611_247_366
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6425611-l.jpg