PSO-Tuned Control Parameter in Differential Evolution Algorithm

In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR...

Full description

Saved in:
Bibliographic Details
Published inSwarm, Evolutionary, and Memetic Computing Vol. 7677; pp. 417 - 424
Main Authors Si, Tapas, Jana, Nanda Dulal, Sil, Jaya
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2012
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3642353797
9783642353796
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-35380-2_49

Cover

Abstract In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR). These are selected on trial-and-error basis for solving optimization problems. Several optimization problems lead to optimal or sub-optimal solution by proper selection of control parameters of the DE algorithm. In this proposed method, PSO algorithm is used to tune the scale factor and cross-over rate in DE algorithm. Basically PSO algorithm is used as a meta-optimizer for DE algorithm. The proposed method is termed as mPSO-DE in this paper. The mPSO-DE algorithm is applied on 12 benchmark unconstrained optimization problems. The obtained results are compared with that of classical DE algorithm. From the experimental studies, it has been found that the proposed mPSO-DE algorithm performed better than DE algorithm.
AbstractList In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR). These are selected on trial-and-error basis for solving optimization problems. Several optimization problems lead to optimal or sub-optimal solution by proper selection of control parameters of the DE algorithm. In this proposed method, PSO algorithm is used to tune the scale factor and cross-over rate in DE algorithm. Basically PSO algorithm is used as a meta-optimizer for DE algorithm. The proposed method is termed as mPSO-DE in this paper. The mPSO-DE algorithm is applied on 12 benchmark unconstrained optimization problems. The obtained results are compared with that of classical DE algorithm. From the experimental studies, it has been found that the proposed mPSO-DE algorithm performed better than DE algorithm.
Author Si, Tapas
Jana, Nanda Dulal
Sil, Jaya
Author_xml – sequence: 1
  givenname: Tapas
  surname: Si
  fullname: Si, Tapas
  email: c2.tapas@gmail.com
  organization: Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura, India
– sequence: 2
  givenname: Nanda Dulal
  surname: Jana
  fullname: Jana, Nanda Dulal
  email: nanda.jana@gmail.com
  organization: Department of Information Technology, National Institute of Technology, Durgapur, India
– sequence: 3
  givenname: Jaya
  surname: Sil
  fullname: Sil, Jaya
  email: js@cs.becs.ac.in
  organization: Department of Computer Science and Technology, BESU, India
BookMark eNotkNtOAjEQhquicUHewIt9gWrb6fZwZQjiISGBRLxuuksLq8sWu4vPb0HmZpJ_8k3yf0M0aEPrELqn5IESIh-1VBiw4AxDAYpgZri-QOMUQwpPGbtEGRWUYgCur9DwfJBaDlBGgDCsJYcblCnGtAah-S0ad90XSaMoYUAy9LT8WODVoXXrfBraPoYmX9pod653Ma_b_Ln23kXX9rVt8tlvaA59Hdp80mxCrPvt7g5de9t0bnzeI_T5MltN3_B88fo-nczxnhZKY0nKSnDClbOs8sCEp7pQXFDpCC1B61JZoTytPF0rJYS32sIaSq2tF9w7GCH2_7fbx7rduGjKEL47Q4k56jLJiwGTBJiTGnPUlSD-D-1j-Dm4rjfuSFWpTrRNtbX71LIzQISSipuiSBRw-APTM2na
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-642-35380-2_49
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783642353802
3642353800
EISSN 1611-3349
Editor Suganthan, Ponnuthurai Nagaratnam
Nanda, Pradipta Kumar
Panigrahi, Bijaya Ketan
Das, Swagatam
Editor_xml – sequence: 1
  fullname: Panigrahi, Bijaya Ketan
– sequence: 2
  fullname: Suganthan, Ponnuthurai Nagaratnam
– sequence: 3
  fullname: Das, Swagatam
– sequence: 4
  fullname: Nanda, Pradipta Kumar
EndPage 424
ExternalDocumentID EBC3068784_552_434
GroupedDBID 089
0D6
0DA
20A
2HV
38.
A4J
AABBV
AAJYQ
AAPKO
AATVQ
ABBUY
ABBVZ
ABCYT
ABFCL
ABFCV
ABMNI
ACDTA
ACDUY
ADWNV
AEDXK
AEHEY
AEJLV
AEKFX
AETDV
AEZAY
AHNNE
AIJHZ
AIMOO
ALMA_UNASSIGNED_HOLDINGS
ATJMZ
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IX.
JJU
MA.
PH7
PI1
SBO
TGCOT
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p1589-70bc64048ea2cf326f19584617e01b399b8a68f1cf1d8866fa9a3d3b99af64fe3
ISBN 3642353797
9783642353796
ISSN 0302-9743
IngestDate Wed Sep 17 02:38:45 EDT 2025
Tue Oct 21 02:06:23 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1589-70bc64048ea2cf326f19584617e01b399b8a68f1cf1d8866fa9a3d3b99af64fe3
OCLC 822993694
PQID EBC3068784_552_434
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_642_35380_2_49
proquest_ebookcentralchapters_3068784_552_434
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle Third International Conference, SEMCCO 2012, Bhubaneswar, India, December 20-22, 2012, Proceedings
PublicationTitle Swarm, Evolutionary, and Memetic Computing
PublicationYear 2012
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000810230
ssj0002792
Score 1.3898988
Snippet In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by...
SourceID springer
proquest
SourceType Publisher
StartPage 417
Title PSO-Tuned Control Parameter in Differential Evolution Algorithm
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=3068784&ppg=434
http://link.springer.com/10.1007/978-3-642-35380-2_49
Volume 7677
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYuaAdGIxpAzb5wK0yyqfjnFCZOk0TH5PWod0sO7G3SjQdXQoSfz3vxU6all62SxRFseO8n2U_v4_fI-RDIDLYZ3jJUq4Clug4YVrnIdNcZ7B_qEhb9Oh-_cbPr5OLm_RmVfCuyS6p9cfi79a8kqegCs8AV8ySfQSyXafwAO4BX7gCwnDdUH7Xzawuh-OPWjRgjn_7jyjnEm9CJ8wMsxOHrmhDuz35qXF59Z1NlhXadn2g-qXCGC3kS5xWsAq6mik1GtO7zoejn7fzxbS-m_UNBU3ERd9Q0BoKh55HC1nRt3FpNXkdoGSlceZqzbbrZMZdwZX_Ft1-nAW0ZNBUBCySjot0neM68abLdY7r8edTOLrAtElkmkJDeOn-F8PSYOhC93VSdsgODG1Ano_GF19-dIY00GnwHIV5O-2wM8estPqNXs7ktmGunS42HOKNnjHZI7uYe0IxKQQG_oo8M9Vr8rKtvEH9QrxPPnUQUg8h7SCk04r2IaQdhLSD8A25PhtPTs-ZL4XB7sNU5CwLdMETWG2NigoLKrdFkqAE1E8ThBqUTC0UFzYsbFgKwblVuYrLWOe5sjyxJj4gg2pemUNCuc61NVFRWtDehAo0MtJFZVoYGws4Lh8R1gpDNg57HyVcuF9_kBtIHZFhKzGJrz_IlgkbRC1jCaKWjaglivrtI3t_R16s5vJ7MqgXS3MMamCtT_xE-AfS0Fe6
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Swarm%2C+Evolutionary%2C+and+Memetic+Computing&rft.atitle=PSO-Tuned+Control+Parameter+in+Differential+Evolution+Algorithm&rft.date=2012-01-01&rft.pub=Springer+Berlin+%2F+Heidelberg&rft.isbn=9783642353796&rft.volume=7677&rft_id=info:doi/10.1007%2F978-3-642-35380-2_49&rft.externalDBID=434&rft.externalDocID=EBC3068784_552_434
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F3068784-l.jpg