PSO-Tuned Control Parameter in Differential Evolution Algorithm
In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR...
        Saved in:
      
    
          | Published in | Swarm, Evolutionary, and Memetic Computing Vol. 7677; pp. 417 - 424 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Germany
          Springer Berlin / Heidelberg
    
        2012
     Springer Berlin Heidelberg  | 
| Series | Lecture Notes in Computer Science | 
| Online Access | Get full text | 
| ISBN | 3642353797 9783642353796  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-642-35380-2_49 | 
Cover
| Abstract | In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR). These are selected on trial-and-error basis for solving optimization problems. Several optimization problems lead to optimal or sub-optimal solution by proper selection of control parameters of the DE algorithm. In this proposed method, PSO algorithm is used to tune the scale factor and cross-over rate in DE algorithm. Basically PSO algorithm is used as a meta-optimizer for DE algorithm. The proposed method is termed as mPSO-DE in this paper. The mPSO-DE algorithm is applied on 12 benchmark unconstrained optimization problems. The obtained results are compared with that of classical DE algorithm. From the experimental studies, it has been found that the proposed mPSO-DE algorithm performed better than DE algorithm. | 
    
|---|---|
| AbstractList | In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by Particle Swarm Optimization (PSO) algorithm. The classical DE algorithm has two main control parameters: Scale Factor (F) and Cross-over Rate (CR). These are selected on trial-and-error basis for solving optimization problems. Several optimization problems lead to optimal or sub-optimal solution by proper selection of control parameters of the DE algorithm. In this proposed method, PSO algorithm is used to tune the scale factor and cross-over rate in DE algorithm. Basically PSO algorithm is used as a meta-optimizer for DE algorithm. The proposed method is termed as mPSO-DE in this paper. The mPSO-DE algorithm is applied on 12 benchmark unconstrained optimization problems. The obtained results are compared with that of classical DE algorithm. From the experimental studies, it has been found that the proposed mPSO-DE algorithm performed better than DE algorithm. | 
    
| Author | Si, Tapas Jana, Nanda Dulal Sil, Jaya  | 
    
| Author_xml | – sequence: 1 givenname: Tapas surname: Si fullname: Si, Tapas email: c2.tapas@gmail.com organization: Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura, India – sequence: 2 givenname: Nanda Dulal surname: Jana fullname: Jana, Nanda Dulal email: nanda.jana@gmail.com organization: Department of Information Technology, National Institute of Technology, Durgapur, India – sequence: 3 givenname: Jaya surname: Sil fullname: Sil, Jaya email: js@cs.becs.ac.in organization: Department of Computer Science and Technology, BESU, India  | 
    
| BookMark | eNotkNtOAjEQhquicUHewIt9gWrb6fZwZQjiISGBRLxuuksLq8sWu4vPb0HmZpJ_8k3yf0M0aEPrELqn5IESIh-1VBiw4AxDAYpgZri-QOMUQwpPGbtEGRWUYgCur9DwfJBaDlBGgDCsJYcblCnGtAah-S0ad90XSaMoYUAy9LT8WODVoXXrfBraPoYmX9pod653Ma_b_Ln23kXX9rVt8tlvaA59Hdp80mxCrPvt7g5de9t0bnzeI_T5MltN3_B88fo-nczxnhZKY0nKSnDClbOs8sCEp7pQXFDpCC1B61JZoTytPF0rJYS32sIaSq2tF9w7GCH2_7fbx7rduGjKEL47Q4k56jLJiwGTBJiTGnPUlSD-D-1j-Dm4rjfuSFWpTrRNtbX71LIzQISSipuiSBRw-APTM2na | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer-Verlag Berlin Heidelberg 2012 | 
    
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2012 | 
    
| DBID | FFUUA | 
    
| DEWEY | 006.3 | 
    
| DOI | 10.1007/978-3-642-35380-2_49 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISBN | 9783642353802 3642353800  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Suganthan, Ponnuthurai Nagaratnam Nanda, Pradipta Kumar Panigrahi, Bijaya Ketan Das, Swagatam  | 
    
| Editor_xml | – sequence: 1 fullname: Panigrahi, Bijaya Ketan – sequence: 2 fullname: Suganthan, Ponnuthurai Nagaratnam – sequence: 3 fullname: Das, Swagatam – sequence: 4 fullname: Nanda, Pradipta Kumar  | 
    
| EndPage | 424 | 
    
| ExternalDocumentID | EBC3068784_552_434 | 
    
| GroupedDBID | 089 0D6 0DA 20A 2HV 38. A4J AABBV AAJYQ AAPKO AATVQ ABBUY ABBVZ ABCYT ABFCL ABFCV ABMNI ACDTA ACDUY ADWNV AEDXK AEHEY AEJLV AEKFX AETDV AEZAY AHNNE AIJHZ AIMOO ALMA_UNASSIGNED_HOLDINGS ATJMZ AZZ BBABE CZZ FFUUA I4C IEZ IX. JJU MA. PH7 PI1 SBO TGCOT TPJZQ TSXQS Z7R Z7U Z7X Z7Z Z81 Z83 Z84 Z85 Z88 -DT -GH -~X 1SB 29L 2HA 5QI 875 AASHB ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-p1589-70bc64048ea2cf326f19584617e01b399b8a68f1cf1d8866fa9a3d3b99af64fe3 | 
    
| ISBN | 3642353797 9783642353796  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 02:38:45 EDT 2025 Tue Oct 21 02:06:23 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCallNum | QA75.5-76.95 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-p1589-70bc64048ea2cf326f19584617e01b399b8a68f1cf1d8866fa9a3d3b99af64fe3 | 
    
| OCLC | 822993694 | 
    
| PQID | EBC3068784_552_434 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_642_35380_2_49 proquest_ebookcentralchapters_3068784_552_434  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012 | 
    
| PublicationDateYYYYMMDD | 2012-01-01 | 
    
| PublicationDate_xml | – year: 2012 text: 2012  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Germany | 
    
| PublicationPlace_xml | – name: Germany – name: Berlin, Heidelberg  | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSubtitle | Third International Conference, SEMCCO 2012, Bhubaneswar, India, December 20-22, 2012, Proceedings | 
    
| PublicationTitle | Swarm, Evolutionary, and Memetic Computing | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer Berlin / Heidelberg Springer Berlin Heidelberg  | 
    
| Publisher_xml | – name: Springer Berlin / Heidelberg – name: Springer Berlin Heidelberg  | 
    
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany  | 
    
| SSID | ssj0000810230 ssj0002792  | 
    
| Score | 1.3898988 | 
    
| Snippet | In this work, a method to control the parameters of Differential Evolution (DE) algorithm is proposed. Here the control parameters of DE are co-evolved by... | 
    
| SourceID | springer proquest  | 
    
| SourceType | Publisher | 
    
| StartPage | 417 | 
    
| Title | PSO-Tuned Control Parameter in Differential Evolution Algorithm | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=3068784&ppg=434 http://link.springer.com/10.1007/978-3-642-35380-2_49  | 
    
| Volume | 7677 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYuaAdGIxpAzb5wK0yyqfjnFCZOk0TH5PWod0sO7G3SjQdXQoSfz3vxU6all62SxRFseO8n2U_v4_fI-RDIDLYZ3jJUq4Clug4YVrnIdNcZ7B_qEhb9Oh-_cbPr5OLm_RmVfCuyS6p9cfi79a8kqegCs8AV8ySfQSyXafwAO4BX7gCwnDdUH7Xzawuh-OPWjRgjn_7jyjnEm9CJ8wMsxOHrmhDuz35qXF59Z1NlhXadn2g-qXCGC3kS5xWsAq6mik1GtO7zoejn7fzxbS-m_UNBU3ERd9Q0BoKh55HC1nRt3FpNXkdoGSlceZqzbbrZMZdwZX_Ft1-nAW0ZNBUBCySjot0neM68abLdY7r8edTOLrAtElkmkJDeOn-F8PSYOhC93VSdsgODG1Ano_GF19-dIY00GnwHIV5O-2wM8estPqNXs7ktmGunS42HOKNnjHZI7uYe0IxKQQG_oo8M9Vr8rKtvEH9QrxPPnUQUg8h7SCk04r2IaQdhLSD8A25PhtPTs-ZL4XB7sNU5CwLdMETWG2NigoLKrdFkqAE1E8ThBqUTC0UFzYsbFgKwblVuYrLWOe5sjyxJj4gg2pemUNCuc61NVFRWtDehAo0MtJFZVoYGws4Lh8R1gpDNg57HyVcuF9_kBtIHZFhKzGJrz_IlgkbRC1jCaKWjaglivrtI3t_R16s5vJ7MqgXS3MMamCtT_xE-AfS0Fe6 | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Swarm%2C+Evolutionary%2C+and+Memetic+Computing&rft.atitle=PSO-Tuned+Control+Parameter+in+Differential+Evolution+Algorithm&rft.date=2012-01-01&rft.pub=Springer+Berlin+%2F+Heidelberg&rft.isbn=9783642353796&rft.volume=7677&rft_id=info:doi/10.1007%2F978-3-642-35380-2_49&rft.externalDBID=434&rft.externalDocID=EBC3068784_552_434 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F3068784-l.jpg |