DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance

Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the 1st $$\text {1}^{\text {st}}$$ generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd $$\text {2}^{\te...

Full description

Saved in:
Bibliographic Details
Published inPattern Recognition. ICPR International Workshops and Challenges Vol. 12665; pp. 442 - 456
Main Authors Tolosana, Ruben, Romero-Tapiador, Sergio, Fierrez, Julian, Vera-Rodriguez, Ruben
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030688208
9783030688202
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-68821-9_38

Cover

Abstract Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the 1st $$\text {1}^{\text {st}}$$ generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd $$\text {2}^{\text {nd}}$$ generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an exhaustive analysis of both 1st $$\text {1}^{\text {st}}$$ and 2nd $$\text {2}^{\text {nd}}$$ DeepFake generations in terms of facial regions and fake detection performance. Two different methods are considered in our experimental framework: i) the traditional one followed in the literature and based on selecting the entire face as input to the fake detection system, and ii) a novel approach based on the selection of specific facial regions as input to the fake detection system. Among all the findings resulting from our experiments, we highlight the poor fake detection results achieved even by the strongest state-of-the-art fake detectors in the latest DeepFake databases of the 2nd $$\text {2}^{\text {nd}}$$ generation, with Equal Error Rate results ranging from 15% to 30%. These results remark the necessity of further research to develop more sophisticated fake detectors.
AbstractList Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the 1st $$\text {1}^{\text {st}}$$ generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd $$\text {2}^{\text {nd}}$$ generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an exhaustive analysis of both 1st $$\text {1}^{\text {st}}$$ and 2nd $$\text {2}^{\text {nd}}$$ DeepFake generations in terms of facial regions and fake detection performance. Two different methods are considered in our experimental framework: i) the traditional one followed in the literature and based on selecting the entire face as input to the fake detection system, and ii) a novel approach based on the selection of specific facial regions as input to the fake detection system. Among all the findings resulting from our experiments, we highlight the poor fake detection results achieved even by the strongest state-of-the-art fake detectors in the latest DeepFake databases of the 2nd $$\text {2}^{\text {nd}}$$ generation, with Equal Error Rate results ranging from 15% to 30%. These results remark the necessity of further research to develop more sophisticated fake detectors.
Author Romero-Tapiador, Sergio
Vera-Rodriguez, Ruben
Tolosana, Ruben
Fierrez, Julian
Author_xml – sequence: 1
  givenname: Ruben
  surname: Tolosana
  fullname: Tolosana, Ruben
  email: ruben.tolosana@uam.es
– sequence: 2
  givenname: Sergio
  surname: Romero-Tapiador
  fullname: Romero-Tapiador, Sergio
– sequence: 3
  givenname: Julian
  surname: Fierrez
  fullname: Fierrez, Julian
– sequence: 4
  givenname: Ruben
  surname: Vera-Rodriguez
  fullname: Vera-Rodriguez, Ruben
BookMark eNo1kMtOwzAQRQ0URFv6Byz8Awa_Y7OraAtIFSAEa8tJJiU0JCFOkfh7nBZWMzp37izOBI3qpgaELhm9YpQm1zYxRBAqKNHGcEasE-YIzSIWEe6ZPUZjphkjQkh7gib_ATUjNI47JzaR4gxNGJeMai00PUezED4opVxRLpQeo8cFQLvyWwh4-d1Uu75s6hs8r331E8qAmwKvfFb6Cr_AJkYB-zrHwz1eQA_ZcI6foSua7tPXGVyg08JXAWZ_c4reVsvX23uyfrp7uJ2vScuUMSRPvUptmhfcpqmXYBNhRJFL7q22RSqpYnkKpjAUmGFacQlGJ5nJVRaR8WKK-OFvaLuy3kDn0qbZBseoG_S56MkJFyW4vSo36IsleSi1XfO1g9A7GFoZ1H3nq-zdtz10wWlppLLMSSadVEb8Anstb5s
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006.4
DOI 10.1007/978-3-030-68821-9_38
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783030688219
3030688216
EISSN 1611-3349
Editor Del Bimbo, Alberto
Bertini, Marco
Vezzani, Roberto
Sclaroff, Stan
Mei, Tao
Farinella, Giovanni Maria
Cucchiara, Rita
Escalante, Hugo Jair
Editor_xml – sequence: 1
  fullname: Del Bimbo, Alberto
– sequence: 2
  fullname: Bertini, Marco
– sequence: 3
  fullname: Vezzani, Roberto
– sequence: 4
  fullname: Sclaroff, Stan
– sequence: 5
  fullname: Mei, Tao
– sequence: 6
  fullname: Farinella, Giovanni Maria
– sequence: 7
  fullname: Cucchiara, Rita
– sequence: 8
  fullname: Escalante, Hugo Jair
EndPage 456
ExternalDocumentID EBC6484591_414_458
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
ARRAB
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p1588-dba5b9bdf29bba4e97383fd42a969fb4051dbe8f80e1816524e867c8d5c80e8a3
ISBN 3030688208
9783030688202
ISSN 0302-9743
IngestDate Wed Sep 17 04:49:44 EDT 2025
Tue Oct 21 09:23:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA1501-1820
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1588-dba5b9bdf29bba4e97383fd42a969fb4051dbe8f80e1816524e867c8d5c80e8a3
Notes Original Abstract: Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the 1st\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {1}^{\text {st}}$$\end{document} generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {2}^{\text {nd}}$$\end{document} generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an exhaustive analysis of both 1st\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {1}^{\text {st}}$$\end{document} and 2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {2}^{\text {nd}}$$\end{document} DeepFake generations in terms of facial regions and fake detection performance. Two different methods are considered in our experimental framework: i) the traditional one followed in the literature and based on selecting the entire face as input to the fake detection system, and ii) a novel approach based on the selection of specific facial regions as input to the fake detection system. Among all the findings resulting from our experiments, we highlight the poor fake detection results achieved even by the strongest state-of-the-art fake detectors in the latest DeepFake databases of the 2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {2}^{\text {nd}}$$\end{document} generation, with Equal Error Rate results ranging from 15% to 30%. These results remark the necessity of further research to develop more sophisticated fake detectors.
OCLC 1241066360
PQID EBC6484591_414_458
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_030_68821_9_38
proquest_ebookcentralchapters_6484591_414_458
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Virtual Event, January 10-15, 2021, Proceedings, Part V
PublicationTitle Pattern Recognition. ICPR International Workshops and Challenges
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002502356
ssj0002792
Score 1.8659502
Snippet Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake...
SourceID springer
proquest
SourceType Publisher
StartPage 442
SubjectTerms Benchmark
DeepFakes
Face manipulation
Fake detection
Fake news
Media forensics
Title DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6484591&ppg=458
http://link.springer.com/10.1007/978-3-030-68821-9_38
Volume 12665
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbockEcylO00MoHbqugTWwnDrey7FIqqKqqRb1ZduIUCWl3IQuH_vrOOHZe2ku5RKuR7Z34c-zxZ88MIe9xWWSsYJHAaLc8LqtIi9hEPJ-ZDANyGZcl4vt5enrNz27ETZfeynmXbM2H4m6nX8n_oAoywBW9ZB-AbNsoCOA34AtPQBieI-N3SLM2QS9cZEwk4P0VIPjX6df5xeWI5UM6vP653jTBmOcheUrdHyyfrd0s9S9bTxf_vMYNY9hFLFlqR65f2lt3dQ7bwhowYW1tk278ovNB6HMJSTziEgKXONKzR4idfBnsPxnuOMBGnw0nVFj0xc7puX8jA6pGWDeOctUEeBlGw-ZiJHSL7uLTPOWSizxWPOYKC21-R5hEDA_bfUaVPbIHuk3I45PF2bcfLeUG1l7CRIoePkFv2cRg6t6j5125S83BPmR0dO4skqtn5Cl6qVB0HwHFn5NHdvWC7Ps9BfUzdg2ikLYjyF6S8xZt2qL9kQas6bqiDdbUY00Ba4rlaYs17WH9ilwvF1fz08in1Yg2sYAvqDRamNyUVZIbo7nNMyZZVfJE52leGbDg49JYWcmZBfMvFQm3Ms0KWYoCRFKz12SyWq_sG0JtygpbzTTsgUuuE6vTKstLXhr4znUlswMShe5S7vDf3zgums6p1QjLAzINfaqweK1CVG0AQzEFYCgHhkIwDh_Y-lvypBv078hk--evPQKTcmuO_VC5B83Hc7Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Pattern+Recognition.+ICPR+International+Workshops+and+Challenges&rft.atitle=DeepFakes+Evolution%3A+Analysis+of+Facial+Regions+and+Fake+Detection+Performance&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030688202&rft.volume=12665&rft_id=info:doi/10.1007%2F978-3-030-68821-9_38&rft.externalDBID=458&rft.externalDocID=EBC6484591_414_458
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6484591-l.jpg