Cardiac MRI Left Ventricle Segmentation and Quantification: A Framework Combining U-Net and Continuous Max-Flow
Cardiac magnetic resonance imaging (MRI) is routinely used for cardiovascular disease diagnosis and therapy guidance. Left ventricle (LV) segmentation is typically required as a first step to quantify cardiac indices. In this work, we developed an automatic approach for LV segmentation and indices q...
        Saved in:
      
    
          | Published in | Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges Vol. 11395; pp. 450 - 458 | 
|---|---|
| Main Authors | , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2019
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783030120283 3030120287  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-030-12029-0_48 | 
Cover
| Summary: | Cardiac magnetic resonance imaging (MRI) is routinely used for cardiovascular disease diagnosis and therapy guidance. Left ventricle (LV) segmentation is typically required as a first step to quantify cardiac indices. In this work, we developed an automatic approach for LV segmentation and indices quantification of cardiac MRI. We employed a U-net convolutional neural network to generate LV segmentation probability maps. The initial probability maps were used to provide the labeling cost measurements of a continuous min-cut segmentation model and the final segmentation was regularized using image edge information. The continuous min-cut segmentation model was solved globally and exactly through convex relaxation and dual optimization on a GPU. We applied our approach to a clinical dataset of 45 subjects and achieved a mean DSC of $$89.4\pm 5.0\%$$ and average symmetric surface distance of $$0.81\pm 0.31$$  mm for LV myocardium segmentation. For LV indices quantification, we observed a mean absolute error of 114.8 mm $$^2$$ for LV cavity, 168.6 mm $$^2$$ for LV myocardium, $$\sim $$ 1.8 mm for LV cavity dimensions, and 1.2 $${\sim }$$ 1.6 mm for LV myocardium wall thickness measurements. These results suggest that our framework provide the potential for LV function quantification using cardiac MRI. | 
|---|---|
| Bibliography: | Original Abstract: Cardiac magnetic resonance imaging (MRI) is routinely used for cardiovascular disease diagnosis and therapy guidance. Left ventricle (LV) segmentation is typically required as a first step to quantify cardiac indices. In this work, we developed an automatic approach for LV segmentation and indices quantification of cardiac MRI. We employed a U-net convolutional neural network to generate LV segmentation probability maps. The initial probability maps were used to provide the labeling cost measurements of a continuous min-cut segmentation model and the final segmentation was regularized using image edge information. The continuous min-cut segmentation model was solved globally and exactly through convex relaxation and dual optimization on a GPU. We applied our approach to a clinical dataset of 45 subjects and achieved a mean DSC of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$89.4\pm 5.0\%$$\end{document} and average symmetric surface distance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.81\pm 0.31$$\end{document} mm for LV myocardium segmentation. For LV indices quantification, we observed a mean absolute error of 114.8 mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} for LV cavity, 168.6 mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} for LV myocardium, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}1.8 mm for LV cavity dimensions, and 1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }$$\end{document}1.6 mm for LV myocardium wall thickness measurements. These results suggest that our framework provide the potential for LV function quantification using cardiac MRI. | 
| ISBN: | 9783030120283 3030120287  | 
| ISSN: | 0302-9743 1611-3349  | 
| DOI: | 10.1007/978-3-030-12029-0_48 |