A Fast and Efficient K-Nearest Neighbor Classifier Using a Convex Envelope

In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due t...

Full description

Saved in:
Bibliographic Details
Published inRecent Trends in Image Processing and Pattern Recognition Vol. 1576; pp. 320 - 329
Main Authors Yepdjio, Hermann, Vajda, Szilárd
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN3031070046
9783031070044
ISSN1865-0929
1865-0937
DOI10.1007/978-3-031-07005-1_27

Cover

Abstract In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due to the tedious distance calculations. Our aim is to provide a generic strategy for all kinds of data collections by calculating fewer distances as in the classical approach. For that reason we propose a data selection technique that reduces the original data to a limited one which contains only some class prototypes. The prototypes are representatives of each class and are selected based on the notion of convex envelope. The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show a considerable speed up (up to 12x) in the classification, while reporting similar or slightly less classification figures than the classification results obtained using the complete data.
AbstractList In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due to the tedious distance calculations. Our aim is to provide a generic strategy for all kinds of data collections by calculating fewer distances as in the classical approach. For that reason we propose a data selection technique that reduces the original data to a limited one which contains only some class prototypes. The prototypes are representatives of each class and are selected based on the notion of convex envelope. The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show a considerable speed up (up to 12x) in the classification, while reporting similar or slightly less classification figures than the classification results obtained using the complete data.
Author Yepdjio, Hermann
Vajda, Szilárd
Author_xml – sequence: 1
  givenname: Hermann
  surname: Yepdjio
  fullname: Yepdjio, Hermann
– sequence: 2
  givenname: Szilárd
  surname: Vajda
  fullname: Vajda, Szilárd
  email: szilard.vajda@cwu.edu
BookMark eNpFkNtOAjEQhquiEZA38KIvUJ0e6OHSEPBE8Eaum-5uC6ub3bVF4-NbwOjFzCT_5J_M_43QoO1aj9A1hRsKoG6N0oQT4JSAApgSapk6QSOelYMgTtGQajklYLg6-18IOfhbMHOBRpRTo5kxAi7RJKU3AGCKKa7MED3d4YVLO-zaCs9DqMvatzv8TFbeRZ_1la8326KLeNa4lOpQ-4jXqW432OFZ1375bzzPvel6f4XOg2uSn_zOMVov5q-zB7J8uX-c3S1JT6dakaALBrRiTAqtaaCVC0DBCaElcOYKVpY-SB90CZQpyowoqKqYlK7UhVIFHyN2vJv6mB_x0RZd954sBbvnZjM3y22GYQ-Y7J5bNomjqY_dx2dOZv3eVea00TXl1vU7H5OVxkiuleXM5NL8BxlQa-I
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 621.367
DOI 10.1007/978-3-031-07005-1_27
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
Computer Science
EISBN 3031070054
9783031070051
EISSN 1865-0937
Editor Hegadi, Ravindra
Pal, Umapada
Santosh, K. C
Editor_xml – sequence: 1
  fullname: Santosh, K. C
– sequence: 2
  fullname: Pal, Umapada
– sequence: 3
  fullname: Hegadi, Ravindra
EndPage 329
ExternalDocumentID EBC6996387_329_328
GroupedDBID 38.
9-X
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SNUHX
TPJZQ
Z7R
Z7U
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
AJIEK
ID FETCH-LOGICAL-p1587-f8b201d2264881f1daf010a4486032ab2ccef6ef8c01271294b17d266ac8b77b3
ISBN 3031070046
9783031070044
ISSN 1865-0929
IngestDate Tue Jul 29 20:26:08 EDT 2025
Tue Apr 22 22:51:36 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum TA1501-1820
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1587-f8b201d2264881f1daf010a4486032ab2ccef6ef8c01271294b17d266ac8b77b3
OCLC 1319829940
PQID EBC6996387_329_328
PageCount 10
ParticipantIDs springer_books_10_1007_978_3_031_07005_1_27
proquest_ebookcentralchapters_6996387_329_328
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle 4th International Conference, RTIP2R 2021, Msida, Malta, December 8-10, 2021, Revised Selected Papers
PublicationTitle Recent Trends in Image Processing and Pattern Recognition
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhou, Lizhu
Filipe, Joaquim
Ghosh, Ashish
Prates, Raquel Oliveira
RelatedPersons_xml – sequence: 1
  givenname: Joaquim
  orcidid: 0000-0002-5961-6606
  surname: Filipe
  fullname: Filipe, Joaquim
– sequence: 2
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
– sequence: 3
  givenname: Raquel Oliveira
  orcidid: 0000-0002-7128-4974
  surname: Prates
  fullname: Prates, Raquel Oliveira
– sequence: 4
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
SSID ssj0002727379
ssj0000580895
ssib054953581
Score 1.6464288
Snippet In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one...
SourceID springer
proquest
SourceType Publisher
StartPage 320
SubjectTerms Character recognition
Classification
Convex envelope
Digit recognition
K-nearest neighbor
Title A Fast and Efficient K-Nearest Neighbor Classifier Using a Convex Envelope
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6996387&ppg=328
http://link.springer.com/10.1007/978-3-031-07005-1_27
Volume 1576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6cYEdgAFi_JIP3Cqjxfnh5ITKlDEKVBy2aTfLdmxpEpRtaRHir-e92G6TsMu4RK0VR44_9_X5-XvfI-TtYWG4sPBLy3Kbs0xnllW2yJlRuXPCOm47MZ2vi-LkLJtf5BeTyfsea2m90u_Mn1vzSv4HVWgDXDFL9g7Ibh4KDfAZ8IUrIAzXkfM7DLMGiVgkVk63pNZPPzr-jWf-x9zDb51-JobpA1EoHrsHjvL0WLWeZF53YhL4yM9sgcq20L7AwCmsEl8789JhaoonGSjMFfxlf0_rZcc6sv3wAeej8EEMH44CkL0Y2OzjYMuZopYoauJnAxua-you_xjkPgcDejLsmrNEekGAof51GtLEh_rX9YejokIzIWTKK4k3XV0zLBuGx-uhhsoO2RECDNy9WT3_cr4JsnH0zkSFOT1x2IVXXdq-Ri-f8rZhDnYeo8Pyzgc5fUT2MC-FYsIIDPwxmdjlPnkYdhE02Oh2nzzoSUzCt_PLdq2-09nNqn1C5jOKeFPAm27wphu8acSbbvGmHd5UUY83jXg_JWfH9enRCQvVNNhVksM_iSs1OHsNJk6XZeKSRjnYi6sMq5ClXGlujHWFdaVBNgK4gZlORAP-mzKlFkKnz8ju8ufSPidUW5UfNq5ojLKZrXTFuc5UZcAeVNC1PCAszpnszvwD0dj4GWrlCNADMo0TK_H2VkYxbUBEphIQkR0iEhF5ccenvyT3twv_Fdld3azta_AkV_pNWC9_AaqSbyw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recent+Trends+in+Image+Processing+and+Pattern+Recognition&rft.atitle=A+Fast+and+Efficient+K-Nearest+Neighbor+Classifier+Using+a+Convex+Envelope&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031070044&rft.volume=1576&rft_id=info:doi/10.1007%2F978-3-031-07005-1_27&rft.externalDBID=328&rft.externalDocID=EBC6996387_329_328
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6996387-l.jpg