A Fast and Efficient K-Nearest Neighbor Classifier Using a Convex Envelope
In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due t...
Saved in:
Published in | Recent Trends in Image Processing and Pattern Recognition Vol. 1576; pp. 320 - 329 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031070046 9783031070044 |
ISSN | 1865-0929 1865-0937 |
DOI | 10.1007/978-3-031-07005-1_27 |
Cover
Abstract | In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due to the tedious distance calculations. Our aim is to provide a generic strategy for all kinds of data collections by calculating fewer distances as in the classical approach. For that reason we propose a data selection technique that reduces the original data to a limited one which contains only some class prototypes. The prototypes are representatives of each class and are selected based on the notion of convex envelope. The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show a considerable speed up (up to 12x) in the classification, while reporting similar or slightly less classification figures than the classification results obtained using the complete data. |
---|---|
AbstractList | In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one of the most popular supervised classification strategies. However, –for large data collections, the process can be very time consuming due to the tedious distance calculations. Our aim is to provide a generic strategy for all kinds of data collections by calculating fewer distances as in the classical approach. For that reason we propose a data selection technique that reduces the original data to a limited one which contains only some class prototypes. The prototypes are representatives of each class and are selected based on the notion of convex envelope. The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show a considerable speed up (up to 12x) in the classification, while reporting similar or slightly less classification figures than the classification results obtained using the complete data. |
Author | Yepdjio, Hermann Vajda, Szilárd |
Author_xml | – sequence: 1 givenname: Hermann surname: Yepdjio fullname: Yepdjio, Hermann – sequence: 2 givenname: Szilárd surname: Vajda fullname: Vajda, Szilárd email: szilard.vajda@cwu.edu |
BookMark | eNpFkNtOAjEQhquiEZA38KIvUJ0e6OHSEPBE8Eaum-5uC6ub3bVF4-NbwOjFzCT_5J_M_43QoO1aj9A1hRsKoG6N0oQT4JSAApgSapk6QSOelYMgTtGQajklYLg6-18IOfhbMHOBRpRTo5kxAi7RJKU3AGCKKa7MED3d4YVLO-zaCs9DqMvatzv8TFbeRZ_1la8326KLeNa4lOpQ-4jXqW432OFZ1375bzzPvel6f4XOg2uSn_zOMVov5q-zB7J8uX-c3S1JT6dakaALBrRiTAqtaaCVC0DBCaElcOYKVpY-SB90CZQpyowoqKqYlK7UhVIFHyN2vJv6mB_x0RZd954sBbvnZjM3y22GYQ-Y7J5bNomjqY_dx2dOZv3eVea00TXl1vU7H5OVxkiuleXM5NL8BxlQa-I |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 621.367 |
DOI | 10.1007/978-3-031-07005-1_27 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Visual Arts Engineering Computer Science |
EISBN | 3031070054 9783031070051 |
EISSN | 1865-0937 |
Editor | Hegadi, Ravindra Pal, Umapada Santosh, K. C |
Editor_xml | – sequence: 1 fullname: Santosh, K. C – sequence: 2 fullname: Pal, Umapada – sequence: 3 fullname: Hegadi, Ravindra |
EndPage | 329 |
ExternalDocumentID | EBC6996387_329_328 |
GroupedDBID | 38. 9-X AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEJLV AEKFX AHVRR AIYYB ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA I4C IEZ SBO SNUHX TPJZQ Z7R Z7U Z7X Z81 Z82 Z83 Z84 Z87 Z88 AJIEK |
ID | FETCH-LOGICAL-p1587-f8b201d2264881f1daf010a4486032ab2ccef6ef8c01271294b17d266ac8b77b3 |
ISBN | 3031070046 9783031070044 |
ISSN | 1865-0929 |
IngestDate | Tue Jul 29 20:26:08 EDT 2025 Tue Apr 22 22:51:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | TA1501-1820 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p1587-f8b201d2264881f1daf010a4486032ab2ccef6ef8c01271294b17d266ac8b77b3 |
OCLC | 1319829940 |
PQID | EBC6996387_329_328 |
PageCount | 10 |
ParticipantIDs | springer_books_10_1007_978_3_031_07005_1_27 proquest_ebookcentralchapters_6996387_329_328 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Communications in Computer and Information Science |
PublicationSeriesTitleAlternate | Communic.Comp.Inf.Science |
PublicationSubtitle | 4th International Conference, RTIP2R 2021, Msida, Malta, December 8-10, 2021, Revised Selected Papers |
PublicationTitle | Recent Trends in Image Processing and Pattern Recognition |
PublicationYear | 2022 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Zhou, Lizhu Filipe, Joaquim Ghosh, Ashish Prates, Raquel Oliveira |
RelatedPersons_xml | – sequence: 1 givenname: Joaquim orcidid: 0000-0002-5961-6606 surname: Filipe fullname: Filipe, Joaquim – sequence: 2 givenname: Ashish surname: Ghosh fullname: Ghosh, Ashish – sequence: 3 givenname: Raquel Oliveira orcidid: 0000-0002-7128-4974 surname: Prates fullname: Prates, Raquel Oliveira – sequence: 4 givenname: Lizhu surname: Zhou fullname: Zhou, Lizhu |
SSID | ssj0002727379 ssj0000580895 ssib054953581 |
Score | 1.6464288 |
Snippet | In this paper, we propose a fast and efficient method to classify all kinds of patterns using the classical k-nearest neighbor (kNN) classifier. The kNN is one... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 320 |
SubjectTerms | Character recognition Classification Convex envelope Digit recognition K-nearest neighbor |
Title | A Fast and Efficient K-Nearest Neighbor Classifier Using a Convex Envelope |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6996387&ppg=328 http://link.springer.com/10.1007/978-3-031-07005-1_27 |
Volume | 1576 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6cYEdgAFi_JIP3Cqjxfnh5ITKlDEKVBy2aTfLdmxpEpRtaRHir-e92G6TsMu4RK0VR44_9_X5-XvfI-TtYWG4sPBLy3Kbs0xnllW2yJlRuXPCOm47MZ2vi-LkLJtf5BeTyfsea2m90u_Mn1vzSv4HVWgDXDFL9g7Ibh4KDfAZ8IUrIAzXkfM7DLMGiVgkVk63pNZPPzr-jWf-x9zDb51-JobpA1EoHrsHjvL0WLWeZF53YhL4yM9sgcq20L7AwCmsEl8789JhaoonGSjMFfxlf0_rZcc6sv3wAeej8EEMH44CkL0Y2OzjYMuZopYoauJnAxua-you_xjkPgcDejLsmrNEekGAof51GtLEh_rX9YejokIzIWTKK4k3XV0zLBuGx-uhhsoO2RECDNy9WT3_cr4JsnH0zkSFOT1x2IVXXdq-Ri-f8rZhDnYeo8Pyzgc5fUT2MC-FYsIIDPwxmdjlPnkYdhE02Oh2nzzoSUzCt_PLdq2-09nNqn1C5jOKeFPAm27wphu8acSbbvGmHd5UUY83jXg_JWfH9enRCQvVNNhVksM_iSs1OHsNJk6XZeKSRjnYi6sMq5ClXGlujHWFdaVBNgK4gZlORAP-mzKlFkKnz8ju8ufSPidUW5UfNq5ojLKZrXTFuc5UZcAeVNC1PCAszpnszvwD0dj4GWrlCNADMo0TK_H2VkYxbUBEphIQkR0iEhF5ccenvyT3twv_Fdld3azta_AkV_pNWC9_AaqSbyw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recent+Trends+in+Image+Processing+and+Pattern+Recognition&rft.atitle=A+Fast+and+Efficient+K-Nearest+Neighbor+Classifier+Using+a+Convex+Envelope&rft.date=2022-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031070044&rft.volume=1576&rft_id=info:doi/10.1007%2F978-3-031-07005-1_27&rft.externalDBID=328&rft.externalDocID=EBC6996387_329_328 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6996387-l.jpg |