A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining

The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues...

Full description

Saved in:
Bibliographic Details
Published inGrid and Distributed Computing, Control and Automation Vol. 121; pp. 269 - 276
Main Authors Tsiafoulis, S., Zorkadis, V. C., Karras, D. A.
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2010
Springer Berlin Heidelberg
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN3642176240
9783642176241
ISSN1865-0929
1865-0937
DOI10.1007/978-3-642-17625-8_27

Cover

Abstract The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.
AbstractList The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology, in particular in the field of electronic data storage media and processing power, has raised serious ethical, philosophical and legal issues related to privacy protection. To cope with these concerns, several privacy preserving methodologies have been proposed, classified in two categories, methodologies that aim at protecting the sensitive data and those that aim at protecting the mining results. In our work, we focus on sensitive data protection and compare existing techniques according to their anonymity degree achieved, the information loss suffered and their performance characteristics. The ℓ-diversity principle is combined with k-anonymity concepts, so that background information can not be exploited to successfully attack the privacy of data subjects data refer to. Based on Kohonen Self Organizing Feature Maps (SOMs), we firstly organize data sets in subspaces according to their information theoretical distance to each other, then create the most relevant classes paying special attention to rare sensitive attribute values, and finally generalize attribute values to the minimum extend required so that both the data disclosure probability and the information loss are possibly kept negligible. Furthermore, we propose information theoretical measures for assessing the anonymity degree achieved and empirical tests to demonstrate it.
Author Zorkadis, V. C.
Tsiafoulis, S.
Karras, D. A.
Author_xml – sequence: 1
  givenname: S.
  surname: Tsiafoulis
  fullname: Tsiafoulis, S.
  organization: Data Protection Authority, Athens, Greece
– sequence: 2
  givenname: V. C.
  surname: Zorkadis
  fullname: Zorkadis, V. C.
  email: zorkadis@dpa.gr
  organization: Data Protection Authority, Athens, Greece
– sequence: 3
  givenname: D. A.
  surname: Karras
  fullname: Karras, D. A.
  email: dakarras@ieee.org
  organization: Automation Dept., Chalkis Institute of Technology, Psachna, Evoia, Greece
BookMark eNpFkMtOwzAQRQ0URFv6ByzyAwY_Ej-WpTylUljA2nKScRsakmKnRfw9DkUwmzuaO9canxEaNG0DCJ1TckEJkZdaKsyxSBmmUrAMK8PkARrxOPkZ6EM0pEpkmGguj_6NlAz-DKZP0FBEX2pN6CmahPBGYqVxj8shWkyTBWy9rfECus_Wr5NZvQ0d-KpZ4isboEym9bL1Vbd6T1zrk2df7WzxFRUC-F1cS65tZ5PHqon9GTp2tg4w-dUxer29eZnd4_nT3cNsOscbmimJGSscc8RpLfJ4WU5BScVKmwqAwvI0JYI4Z1VphdQqc1mZKiiKrBS5pVY7PkZs_27Y9JeCN3nbroOhxPToTERnuIk8zA8p06OLoXQf2vj2YwuhM9CnCmi6CKBY2U38dzCcCEEFi0piSvFvph5vXg
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2010
DBID FFUUA
DOI 10.1007/978-3-642-17625-8_27
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3642176259
9783642176258
EISSN 1865-0937
Editor Stoica, Adrian
Kang, Byeong-Ho
Yau, Stephen S
Gervasi, Osvaldo
Ślęzak, Dominik
Editor_xml – sequence: 1
  fullname: Stoica, Adrian
– sequence: 2
  fullname: Kang, Byeong-Ho
– sequence: 3
  fullname: Gervasi, Osvaldo
– sequence: 4
  fullname: Ślęzak, Dominik
– sequence: 5
  fullname: Yau, Stephen S
EndPage 276
ExternalDocumentID EBC3066162_300_278
GroupedDBID -T.
089
0D6
0DA
20A
38.
4UP
4V3
9-X
A4J
AABBV
AAJYQ
AATVQ
ABBUY
ABBVZ
ABCYT
ABMKK
ABMNI
ACDPG
ACDTA
ACDUY
ACZTO
ADVHH
AEHEY
AEJLV
AEKFX
AEOKE
AETDV
AEZAY
AHNNE
AHSMR
ALMA_UNASSIGNED_HOLDINGS
ATJMZ
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
JJU
MA.
MYL
SBO
SNUHX
TBMHI
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
29F
RSU
ID FETCH-LOGICAL-p1587-22cf2f0f996b779b1e8782da46eeca344060ffa8da67985f5d48ecc5d6ba1a9f3
ISBN 3642176240
9783642176241
ISSN 1865-0929
IngestDate Tue Jul 29 20:00:20 EDT 2025
Tue Oct 21 00:15:40 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p1587-22cf2f0f996b779b1e8782da46eeca344060ffa8da67985f5d48ecc5d6ba1a9f3
OCLC 693779901
PQID EBC3066162_300_278
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_642_17625_8_27
proquest_ebookcentralchapters_3066162_300_278
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin, Heidelberg
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSubtitle International Conferences, GDC and CA 2010, Held As Part of the Future Generation Information Technology Conference, FGIT 2010, Jeju Island, Korea, December 13-15, 2010. Proceedings
PublicationTitle Grid and Distributed Computing, Control and Automation
PublicationYear 2010
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
SSID ssj0000476237
ssj0000580895
ssib054953581
Score 1.3779312
Snippet The increasing use of fast and efficient data mining algorithms in huge collections of personal data, facilitated through the exponential growth of technology,...
SourceID springer
proquest
SourceType Publisher
StartPage 269
SubjectTerms k-anonymity
l-diversity
Privacy Enhancing Technologies
SOM
Title A Neural-Network Clustering-Based Algorithm for Privacy Preserving Data Mining
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=3066162&ppg=278
http://link.springer.com/10.1007/978-3-642-17625-8_27
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68gI8AAPExg_5gbcoVerEifNYytA0WIVEh_YWObG9VXQtStM98Pfwh3IXO2lSJqTxElWp2zj-Tnfn8913hLxXoHe5YrBN5TnzI3ABfDkOCz_JRajAHohCYoHz-Sw-vYjOLvnlYPC7k7W0rfJR8evOupL_QRXuAa5YJXsPZNs_hRvwGfCFKyAM1z3ntx9mtWz95ULZRGLkvsW2VRisrZs0uD4lU5eGjoMm22p90zt1n28W0rT90L-N2hDyuvwhleuSPvKm7RefZVna8q-PI28y6grbxEOSD7n0Zzar3Jsut8jAABPxP4CdhOcvr9blorq-qfMav5aLW-wzjwkgqKxWVyB-lfTO63YVVtMhA_OmX8CysTWKtg-Fy2Ruqy8bNdWNY9TpcN04RhPH9P5B81WXnESwiYqZZctySlvE3A9SFznR3XuWUKZRznHasfPM9p35y4R0s0bgYcigybgvMpYckAOYwJA8mJycffneaC2OGboNiVxt_yP4hXP6LMO8CETd_qedKBYZNS_iiMd2L9Yp8LxrFr2t0N7pfe0UzZ-Sx1goQ7GCBeB4RgZ6dUieNPBQB8chedThvHxOZhPalxW6Lyu0lRUK4FInK3QnKxRlhVpZeUEuPp3Mp6e-a-rh_xxzMGiMFYaZwMA-O0-SNB9rAU6qklGsdSHDCBzMwBgplMTzQW64igSoGa7iXI5lasKXZLhar_QrQoswVFKKQKs0iAwvUqNNlGuhuJQB1-aI-M1KZXXqgct3Luy6bDLYLsfjmGV4ossScUS8ZjkzHL7JGk5vwCELM8Ahq3HIEIfje41-TR7uhP4NGVblVr8Fd7bK3zl5-gPgcZbz
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Grid+and+Distributed+Computing%2C+Control+and+Automation&rft.au=Tsiafoulis%2C+S.&rft.au=Zorkadis%2C+V.+C.&rft.au=Karras%2C+D.+A.&rft.atitle=A+Neural-Network+Clustering-Based+Algorithm+for+Privacy+Preserving+Data+Mining&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2010-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642176241&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=269&rft.epage=276&rft_id=info:doi/10.1007%2F978-3-642-17625-8_27
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F3066162-l.jpg