Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, f·P- and f/P-Greedy
Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory, especially when compared...
Saved in:
| Published in | Constructive approximation Vol. 57; no. 1; pp. 45 - 74 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0176-4276 1432-0940 |
| DOI | 10.1007/s00365-022-09592-3 |
Cover
| Abstract | Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory, especially when compared to the case of the data-independent
P
-greedy algorithm, for which optimal convergence rates are available, despite its performances being usually inferior to the ones of target data-dependent algorithms. In this work, we fill this gap by first defining a new scale of greedy algorithms for interpolation that comprises all the existing ones in a unique analysis, where the degree of dependency of the selection criterion on the functional data is quantified by a real parameter. We then prove new convergence rates where this degree is taken into account, and we show that, possibly up to a logarithmic factor, target data-dependent selection strategies provide faster convergence. In particular, for the first time we obtain convergence rates for target data adaptive interpolation that are faster than the ones given by uniform points, without the need of any special assumption on the target function. These results are made possible by refining an earlier analysis of greedy algorithms in general Hilbert spaces. The rates are confirmed by a number of numerical examples. |
|---|---|
| AbstractList | Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory, especially when compared to the case of the data-independent
P
-greedy algorithm, for which optimal convergence rates are available, despite its performances being usually inferior to the ones of target data-dependent algorithms. In this work, we fill this gap by first defining a new scale of greedy algorithms for interpolation that comprises all the existing ones in a unique analysis, where the degree of dependency of the selection criterion on the functional data is quantified by a real parameter. We then prove new convergence rates where this degree is taken into account, and we show that, possibly up to a logarithmic factor, target data-dependent selection strategies provide faster convergence. In particular, for the first time we obtain convergence rates for target data adaptive interpolation that are faster than the ones given by uniform points, without the need of any special assumption on the target function. These results are made possible by refining an earlier analysis of greedy algorithms in general Hilbert spaces. The rates are confirmed by a number of numerical examples. Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory, especially when compared to the case of the data-independent P-greedy algorithm, for which optimal convergence rates are available, despite its performances being usually inferior to the ones of target data-dependent algorithms. In this work, we fill this gap by first defining a new scale of greedy algorithms for interpolation that comprises all the existing ones in a unique analysis, where the degree of dependency of the selection criterion on the functional data is quantified by a real parameter. We then prove new convergence rates where this degree is taken into account, and we show that, possibly up to a logarithmic factor, target data-dependent selection strategies provide faster convergence. In particular, for the first time we obtain convergence rates for target data adaptive interpolation that are faster than the ones given by uniform points, without the need of any special assumption on the target function. These results are made possible by refining an earlier analysis of greedy algorithms in general Hilbert spaces. The rates are confirmed by a number of numerical examples. |
| Author | Wenzel, Tizian Haasdonk, Bernard Santin, Gabriele |
| Author_xml | – sequence: 1 givenname: Tizian surname: Wenzel fullname: Wenzel, Tizian email: tizian.wenzel@mathematik.uni-stuttgart.de organization: Institute for Applied Analysis and Numerical Simulation, University of Stuttgart – sequence: 2 givenname: Gabriele orcidid: 0000-0001-6959-1070 surname: Santin fullname: Santin, Gabriele organization: Digital Society Center, Bruno Kessler Foundation – sequence: 3 givenname: Bernard surname: Haasdonk fullname: Haasdonk, Bernard organization: Institute for Applied Analysis and Numerical Simulation, University of Stuttgart |
| BookMark | eNpFkE9LAzEQxYNUsK1-AU8Br8YmmWT_eCutVrFgkXpesruT2rJm12Qr9JN595O5dQVPwxvevMf8RmTgaoeEXAp-IziPJ4FziDTjUjKe6lQyOCFDoeAoFR-QIRdxxJSMozMyCmHHudAJxEOymzpTHcI20NrStfEbbOnctIbNsUFXomvpwiOWB_qE3mFFp9Wm9tv27T3c0lntPrE7cQXSF9NioLb21LJrar-_VowaV1I7WbE-4ZycWlMFvPibY_J6f7eePbDl8-JxNl2yRui4ZSrhCeiCgwbQJViT2jIvZa5kWSQmUTGoVGORqxx0t5fAsbBJEWGBqQE0MCZXfW7j6489hjbb1XvfvRkykFqJWEVdw5hA7wqN37oN-n-X4NkRatZDzTqo2S_UDOAHtYlsAA |
| Cites_doi | 10.1007/s10596-018-9785-x 10.1007/s10444-004-1829-1 10.1007/BF02678430 10.1016/j.jcp.2021.110378 10.1007/978-3-319-75319-5_2 10.1090/S0025-5718-04-01708-9 10.1016/j.jat.2018.05.002 10.1007/BF02124742 10.1016/j.jat.2020.105508 10.3934/cpaa.2009.8.383 10.1002/cnm.3095 10.1109/78.258082 10.1007/s00365-016-9338-2 10.1007/s00365-013-9186-2 10.1007/s00365-005-0624-7 10.1016/j.cam.2011.05.021 10.1090/S0025-5718-99-01009-1 10.1007/BF02432002 10.1016/j.jat.2008.10.014 10.1007/s00211-005-0637-y 10.1017/S0962492906380014 10.1007/s10543-021-00870-3 10.1023/A:1019105612985 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C 7XB 8FE 8FG ABJCF AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00365-022-09592-3 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | Engineering Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1432-0940 |
| EndPage | 74 |
| ExternalDocumentID | 10_1007_s00365_022_09592_3 |
| GrantInformation_xml | – fundername: Universität Stuttgart (1023) |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZWQNP ZY4 ~8M ~EX 7XB 8FE 8FG AAPKM ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| ID | FETCH-LOGICAL-p157t-480835c035335d3fa9fdbd2b42dc8a8473495ecb4b35bd2230ecf8c6ece9a3ea3 |
| IEDL.DBID | C6C |
| ISSN | 0176-4276 |
| IngestDate | Fri Sep 26 03:10:49 EDT 2025 Fri Feb 21 02:44:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Greedy algorithms Kernel methods 46E22 Convergence rates Primary 65D15 65D05 Target data-dependent algorithms Secondary 41A58 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p157t-480835c035335d3fa9fdbd2b42dc8a8473495ecb4b35bd2230ecf8c6ece9a3ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6959-1070 |
| OpenAccessLink | https://doi.org/10.1007/s00365-022-09592-3 |
| PQID | 3254174608 |
| PQPubID | 2043922 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_3254174608 springer_journals_10_1007_s00365_022_09592_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Constructive approximation |
| PublicationTitleAbbrev | Constr Approx |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Dutta, Farthing, Perracchione, Savant, Putti (CR6) 2021; 439 Wenzel, Santin, Haasdonk (CR32) 2021; 262 CR19 De Marchi, Schaback, Wendland (CR3) 2005; 23 Santin, Karvonen, Haasdonk (CR22) 2022; 62 Wendland, Rieger (CR31) 2005; 101 Wirtz, Haasdonk (CR33) 2013; 6 Davis, Mallat, Avellaneda (CR2) 1997; 13 CR14 Koeppl, Santin, Haasdonk, Helmig (CR10) 2018; 34 Maday, Nguyen, Patera, Pau (CR12) 2009; 8 Narcowich, Ward, Wendland (CR16) 2005; 74 DeVore, Temlyakov (CR5) 1996; 5 Fasshauer (CR7) 2007 Santin, Haasdonk (CR20) 2017; 10 Müller, Schaback (CR15) 2009; 161 Schaback (CR23) 1995; 3 Haasdonk, Santin, Keiper, Milde, Volkwein (CR9) 2018 Schaback, Wendland (CR26) 2000; 24 DeVore, Petrova, Wojtaszczyk (CR4) 2013; 37 Mallat, Zhang (CR13) 1993; 41 Schaback (CR24) 1999; 68 Schaback (CR25) 2018; 235 CR28 Wendland (CR30) 2005 CR27 Pazouki, Schaback (CR18) 2011; 236 Cohen, Dahmen, DeVore (CR1) 2017; 45 Köppel, Franzelin, Kröker, Oladyshkin, Santin, Wittwar, Barth, Haasdonk, Nowak, Pflüger, Rohde (CR11) 2019; 23 CR21 Fasshauer, McCourt (CR8) 2015 Temlyakov (CR29) 2008; 17 Narcowich, Ward, Wendland (CR17) 2006; 24 |
| References_xml | – volume: 23 start-page: 339 issue: 2 year: 2019 end-page: 354 ident: CR11 article-title: Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario publication-title: Comput. Geosci. doi: 10.1007/s10596-018-9785-x – volume: 23 start-page: 317 issue: 3 year: 2005 end-page: 330 ident: CR3 article-title: Near-optimal data-independent point locations for radial basis function interpolation publication-title: Adv. Comput. Math. doi: 10.1007/s10444-004-1829-1 – volume: 13 start-page: 57 issue: 1 year: 1997 end-page: 98 ident: CR2 article-title: Adaptive greedy approximations publication-title: Constr. Approx. doi: 10.1007/BF02678430 – ident: CR14 – volume: 439 year: 2021 ident: CR6 article-title: A greedy non-intrusive reduced order model for shallow water equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110378 – start-page: 21 year: 2018 end-page: 45 ident: CR9 article-title: Greedy kernel approximation for sparse surrogate modeling publication-title: Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing doi: 10.1007/978-3-319-75319-5_2 – year: 2007 ident: CR7 publication-title: Meshfree Approximation Methods with MATLAB, Volume 6 Interdisciplinary Mathematical Sciences – volume: 74 start-page: 743 issue: 250 year: 2005 end-page: 763 ident: CR16 article-title: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting publication-title: Math. Comput. doi: 10.1090/S0025-5718-04-01708-9 – volume: 235 start-page: 1 year: 2018 end-page: 19 ident: CR25 article-title: Superconvergence of kernel-based interpolation publication-title: J. Approx. Theory doi: 10.1016/j.jat.2018.05.002 – volume: 5 start-page: 173 issue: 2–3 year: 1996 end-page: 187 ident: CR5 article-title: Some remarks on greedy algorithms publication-title: Adv. Comput. Math. doi: 10.1007/BF02124742 – volume: 262 year: 2021 ident: CR32 article-title: A novel class of stabilized greedy kernel approximation algorithms: convergence, stability and uniform point distribution publication-title: J. Approx. Theory doi: 10.1016/j.jat.2020.105508 – volume: 8 start-page: 383 issue: 1 year: 2009 end-page: 404 ident: CR12 article-title: A general multipurpose interpolation procedure: the magic points publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2009.8.383 – year: 2005 ident: CR30 publication-title: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics – volume: 34 start-page: e3095 issue: 8 year: 2018 ident: CR10 article-title: Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.3095 – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 ident: CR13 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – ident: CR27 – volume: 45 start-page: 113 issue: 1 year: 2017 end-page: 127 ident: CR1 article-title: Orthogonal matching pursuit under the restricted isometry property publication-title: Constr. Approx. doi: 10.1007/s00365-016-9338-2 – volume: 10 start-page: 68 year: 2017 end-page: 78 ident: CR20 article-title: Convergence rate of the data-independent -greedy algorithm in kernel-based approximation publication-title: Dolomites Res. Notes Approx. – volume: 6 start-page: 83 year: 2013 end-page: 100 ident: CR33 article-title: A vectorial kernel orthogonal greedy algorithm publication-title: Dolomites Res. Notes Approx. – volume: 37 start-page: 455 issue: 3 year: 2013 end-page: 466 ident: CR4 article-title: Greedy algorithms for reduced bases in Banach spaces publication-title: Constr. Approx. doi: 10.1007/s00365-013-9186-2 – ident: CR21 – volume: 24 start-page: 175 issue: 2 year: 2006 end-page: 186 ident: CR17 article-title: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions publication-title: Constr. Approx. doi: 10.1007/s00365-005-0624-7 – volume: 236 start-page: 575 issue: 4 year: 2011 end-page: 588 ident: CR18 article-title: Bases for kernel-based spaces publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2011.05.021 – ident: CR19 – volume: 68 start-page: 201 issue: 225 year: 1999 end-page: 216 ident: CR24 article-title: Improved error bounds for scattered data interpolation by radial basis functions publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01009-1 – volume: 3 start-page: 251 issue: 3 year: 1995 end-page: 264 ident: CR23 article-title: Error estimates and condition numbers for radial basis function interpolation publication-title: Adv. Comput. Math. doi: 10.1007/BF02432002 – volume: 161 start-page: 645 issue: 2 year: 2009 end-page: 655 ident: CR15 article-title: A Newton basis for kernel spaces publication-title: J. Approx. Theory doi: 10.1016/j.jat.2008.10.014 – volume: 101 start-page: 729 issue: 4 year: 2005 end-page: 748 ident: CR31 article-title: Approximate interpolation with applications to selecting smoothing parameters publication-title: Numer. Math. doi: 10.1007/s00211-005-0637-y – volume: 17 start-page: 235 year: 2008 end-page: 409 ident: CR29 article-title: Greedy approximation publication-title: Acta Numer. doi: 10.1017/S0962492906380014 – volume: 62 start-page: 279 issue: 1 year: 2022 end-page: 310 ident: CR22 article-title: Sampling based approximation of linear functionals in reproducing kernel hilbert spaces publication-title: BIT Numer. Math. doi: 10.1007/s10543-021-00870-3 – volume: 24 start-page: 239 issue: 3 year: 2000 end-page: 254 ident: CR26 article-title: Adaptive greedy techniques for approximate solution of large RBF systems publication-title: Numer. Algorithms doi: 10.1023/A:1019105612985 – ident: CR28 – year: 2015 ident: CR8 publication-title: Kernel-Based Approximation Methods Using MATLAB, Volume 19 of Interdisciplinary Mathematical Sciences |
| SSID | ssj0015837 |
| Score | 2.4198015 |
| Snippet | Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 45 |
| SubjectTerms | Algorithms Analysis Approximation Codes Convergence Fourier transforms Greedy algorithms Hilbert space Interpolation Mathematics Mathematics and Statistics Numerical Analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5qe9GD-MRqlT147NI0m81DENHWUpSWUlroLewrimha23jwl3n3lzm7SVr04DWBgexHZr7ZmfkGoUtXMoijiU9YGETEkxH4Qck9IhiQER5prW3FdDD0-1PvYcZmFTQsZ2FMW2XpE62jVnNp7shbFDIZYM--E94s3onZGmWqq-UKDV6sVlDXVmJsC9Vco4xVRbW7--FovK4rsDBX0WwHPvHcwC_GaOwwnZFmMdPKLjF3Yy6hv0jnnzqpDT-9PbRb8EZ8mwO9jyo6PUA7g7Xo6uoQvZQCI3ie4Int8MZdnnHSLRbdZth02ahP_KiXqQZjr0_whdnz2-oKd0z3uR3E1Hhs-CcGNosT0sTJ99eIYJ4qnLRGJLdwhKa9-0mnT4pVCmTRZkFGvNBQLelQYHdM0YRHiRLKFZ6rZMghQlFIlLQUnqAMnkNeomUSSl9LHXGqOT1G1XSe6hOEnVAA8I6gSkpPKCAwjgogP3d0FALsvI4a5anFxf-wijfo1VGzPMnN67V2ssUgBgxii0FMT_-3doa2zf73vI26garZ8kOfA0vIxEUB_Q-B7rqL priority: 102 providerName: ProQuest |
| Title | Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, f·P- and f/P-Greedy |
| URI | https://link.springer.com/article/10.1007/s00365-022-09592-3 https://www.proquest.com/docview/3254174608 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1432-0940 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: ABDBF dateStart: 19960101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1432-0940 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: AMVHM dateStart: 19851201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: AFBBN dateStart: 19851201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0940 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IXPRgfEYUyR48srF0-9h6Q56RlBACBk_NvqoxWgzUg7_Mu7_M2bZgJF68dJO2mcN-m843nW9mELqypQt-NPaIy_yAODKA76DkDhEukBEeaK2zjGk48gYz527uzos2OaYWZit_b5p9Gh2W0ZybP1Y2oSVUASflZYlZr73JGLgs74_Z9D3i2L5XFMj8beMXndzKgGaOpXeA9gtGiFs5hIdoRydHaC_ctFNdHaPndesQvIjxNNNu4w5POekUI2xTbPQz6gMP9TLRYOzlcQFR_9Pr6ga3ja48K7HUeGKYJQaeimPSwPHX55hgnigcX49JbuEEzXrdaXtAiiEJ5K3p-ilxmCFR0qLA21xFYx7ESihbOLaSjIPvoRACaSkcQV24DxGHljGTnpY64FRzeorKySLRZwhbTACklqBKSkcooCaW8iHytnTAAFBeRbX1rkXFSV9FFCJMiGo8i1VRY72TP483XZEzDCLAIMowiOj5_16_QLtm0nsumK6hcrp815fAB1JRRyXW69dRpdV_GHbNGt4PQlhvu6PxpJ4dE7jO7NY3dqCzag |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHNQD8RlR1D7obTsM3T0vEkKUZbO4j2w2S8Jt7EeNhOgsskMIv8ybB36Z1b0zS_TgjevMpA5VNdVfdT0-gA_CxnSOlgmPszTnyuYUB61W3MQERnSOiKFiOhon_RP15TQ-XYPf7SyMb6tsY2II1G5u_R35jqRMhtBzEmUHFz-5Z43y1dWWQkM31ApuP6wYawY7BnhzTSncYv-4S_b-KETvaHbY5w3LAL_YjdOaq8yjEBtJAj6xk6XOS2ecMEo4m2kK3pJyCLRGGRnTc4LsaMvMJmgx1xK1JLkPYEPRZ5T8bXw-Gk-mqzpGnC23du6mCVciTZqxnTC851fB-Olowf1dnODyL5D7T102HHe9J7DZ4FT2aelYT2ENq2fweLRa8rp4DuftQhM2L9ksdJSzrq417zbEujXzXT3uhg3wskIS9v0babQ--7HYY4e-2z0MfiKberzLCD2zkndYeftrwpmuHCt3Jnwp4QWc3ItSX8J6Na_wFbAoM-RokZHOWmUcAabIpWhEhHlGbqa3YLvVWtH8f4vizlu2oNNq8u71aldzsEFBNiiCDQr5-v_S3sPD_mw0LIbH48EbeOS555ct3NuwXl9e4VtCKLV517gBg6_37Xl_APDW-Nk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjAsVbT2Nm4oZSqUFpVqJV6i7yyCNKqDQe-jDtfxjhJyyIuXJPIBz_L8yYz7w1C5670II4an3hhEBEmI7gHJWdEeEBGeKS1ziumvb7fGbGbsTf-puLPu90XJclC02BdmtKsMVWmsRS-WRsVqyx2if2P5RK6itYYRDc7wyD242UdwQsL18xm4BPmBn4pm_l7jR8k81ddNA837W20VfJEfFkAu4NWdLqLNntLk9X5HnpaGIrgicHDvKMbt3jGSascbJth21Wj3nBXz1INiz3fT2aP2cPL_ALHtts8F15qfGf5Jgb2ig2pY_PxPiCYpwqbxoAUK-yjUftqGHdIOTqBTJtekBEWWmolHQpszlPU8MgooVzBXCVDDhGJQmKkpWCCevAc8hAtTSh9LXXEqeb0AFXSSaoPEXZCAUA7giopmVBAWBwVQD7u6CgEmHkV1Ra7lpTnf55QyDsh1_GdsIrqi538er30Ss4xSACDJMcgoUf_-_wMrQ9a7eT2ut89Rht2FHzRUV1DlWz2qk-AMGTiND8Tn4dTuAc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Target+Data-Dependent+Greedy+Kernel+Algorithms%3A+Convergence+Rates+for+f-%2C+f%C2%B7P-+and+f%2FP-Greedy&rft.jtitle=Constructive+approximation&rft.au=Wenzel%2C+Tizian&rft.au=Santin%2C+Gabriele&rft.au=Haasdonk%2C+Bernard&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=57&rft.issue=1&rft.spage=45&rft.epage=74&rft_id=info:doi/10.1007%2Fs00365-022-09592-3&rft.externalDocID=10_1007_s00365_022_09592_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon |